Suppr超能文献

鉴定和验证与 miR-34a 协同作用的 microRNAs——组合 microRNA 治疗的基础。

Identification and validation of microRNAs that synergize with miR-34a - a basis for combinatorial microRNA therapeutics.

机构信息

a Department of Biological Sciences , Purdue University , West Lafayette , IN , USA.

b Stem Cell Program, Boston Children's Hospital , Harvard Medical School , Boston , MA , USA.

出版信息

Cell Cycle. 2019 Aug;18(15):1798-1811. doi: 10.1080/15384101.2019.1634956. Epub 2019 Jul 1.

Abstract

Efforts to search for better treatment options for cancer have been a priority, and due to these efforts, new alternative therapies have emerged. For instance, clinically relevant tumor-suppressive microRNAs that target key oncogenic drivers have been identified as potential anti-cancer therapeutics. MicroRNAs are small non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. Aberrant microRNA expression, through misexpression of microRNA target genes, can have profound cellular effects leading to a variety of diseases, including cancer. While altered microRNA expression contributes to a cancerous state, restoration of microRNA expression has therapeutic benefits. For example, ectopic expression of microRNA-34a (miR-34a), a tumor suppressor gene that is a direct transcriptional target of p53 and thus is reduced in p53 mutant tumors, has clear effects on cell proliferation and survival in murine models of cancer. MicroRNA replacement therapies have recently been tested in combination with other agents, including other microRNAs, to simultaneously target multiple pathways to improve the therapeutic response. Thus, we reasoned that other microRNA combinations could collaborate to further improve treatment. To test this hypothesis miR-34a was used in an unbiased cell-based approach to identify combinatorial microRNA pairs with enhanced efficacy over miR-34a alone. This approach identified a subset of microRNAs that was able to enhance the miR-34a antiproliferative activity. These microRNA combinatorial therapeutics could offer superior tumor-suppressive abilities to suppress oncogenic properties compared to a monotherapeutic approach. Collectively these studies aim to address an unmet need of identifying, characterizing, and therapeutically targeting microRNAs for the treatment of cancer.

摘要

为癌症寻找更好的治疗方法一直是重中之重,正是由于这些努力,新的替代疗法已经出现。例如,已经确定了具有临床相关性的肿瘤抑制性 microRNA,这些 microRNA 可靶向关键致癌驱动基因,作为潜在的抗癌治疗药物。microRNA 是一种小的非编码 RNA,可在转录后水平负调控基因表达。异常的 microRNA 表达(通过 microRNA 靶基因的错误表达)会对细胞产生深远的影响,导致多种疾病,包括癌症。虽然 microRNA 表达的改变会导致癌症状态,但 microRNA 表达的恢复具有治疗益处。例如,肿瘤抑制基因 microRNA-34a(miR-34a)的异位表达,它是 p53 的直接转录靶标,因此在 p53 突变型肿瘤中减少,对癌症小鼠模型中的细胞增殖和存活有明显影响。microRNA 替代疗法最近已与其他药物联合进行测试,包括其他 microRNA,以同时靶向多个途径来提高治疗反应。因此,我们推断其他 microRNA 组合可以协同作用以进一步改善治疗效果。为了验证这一假设,我们在一项基于细胞的无偏倚方法中使用 miR-34a 来鉴定与单独使用 miR-34a 相比具有增强功效的组合 microRNA 对。这种方法鉴定了一组 microRNA,它们能够增强 miR-34a 的抗增殖活性。与单药治疗方法相比,这些 microRNA 组合治疗药物可能具有更好的肿瘤抑制能力,以抑制致癌特性。总的来说,这些研究旨在满足确定、表征和治疗性靶向 microRNA 以治疗癌症的未满足需求。

相似文献

1
Identification and validation of microRNAs that synergize with miR-34a - a basis for combinatorial microRNA therapeutics.
Cell Cycle. 2019 Aug;18(15):1798-1811. doi: 10.1080/15384101.2019.1634956. Epub 2019 Jul 1.
3
The RNA-binding protein SART3 promotes miR-34a biogenesis and G cell cycle arrest in lung cancer cells.
J Biol Chem. 2019 Nov 15;294(46):17188-17196. doi: 10.1074/jbc.AC119.010419. Epub 2019 Oct 16.
5
The tumor-suppressive and potential therapeutic functions of miR-34a in epithelial carcinomas.
Expert Opin Ther Targets. 2016 Jun;20(6):737-53. doi: 10.1517/14728222.2016.1114102. Epub 2015 Dec 11.
7
MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251.
Arch Med Res. 2010 Feb;41(2):67-74. doi: 10.1016/j.arcmed.2010.02.007.
8
The anti-tumor effects of CT-26 derived exosomes enriched by MicroRNA-34a on murine model of colorectal cancer.
Life Sci. 2022 Feb 1;290:120234. doi: 10.1016/j.lfs.2021.120234. Epub 2021 Dec 23.
10
Developing Folate-Conjugated miR-34a Therapeutic for Prostate Cancer: Challenges and Promises.
Int J Mol Sci. 2024 Feb 9;25(4):2123. doi: 10.3390/ijms25042123.

引用本文的文献

2
The crosstalk between non-coding RNAs and cell-cycle events: A new frontier in cancer therapy.
Mol Ther Oncol. 2024 Feb 29;32(2):200785. doi: 10.1016/j.omton.2024.200785. eCollection 2024 Jun 20.
3
A tumor endothelial cell-specific microRNA replacement therapy for hepatocellular carcinoma.
iScience. 2024 Jan 4;27(2):108797. doi: 10.1016/j.isci.2024.108797. eCollection 2024 Feb 16.
4
Novel Siglec-15-Sia axis inhibitor leads to colorectal cancer cell death by targeting miR-6715b-3p and oncogenes.
Front Immunol. 2023 Oct 6;14:1254911. doi: 10.3389/fimmu.2023.1254911. eCollection 2023.
5
The Features of Immune Checkpoint Gene Regulation by microRNA in Cancer.
Int J Mol Sci. 2022 Aug 18;23(16):9324. doi: 10.3390/ijms23169324.
6
RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies.
J Pharmacol Exp Ther. 2023 Jan;384(1):133-154. doi: 10.1124/jpet.122.001234. Epub 2022 Jun 9.
7
MicroRNA-124 modulates neuroinflammation in acute methanol poisoning rats via targeting Krüppel-like factor-6.
Bioengineered. 2022 May;13(5):13507-13519. doi: 10.1080/21655979.2022.2078549.
8
LOC102724163 promotes breast cancer cell proliferation and invasion by stimulating MUC19 expression.
Oncol Lett. 2022 Mar;23(3):100. doi: 10.3892/ol.2022.13220. Epub 2022 Jan 27.
9
MicroRNA-3148 inhibits glioma by decreasing and inhibiting the NF-kB pathway.
Exp Ther Med. 2022 Jan;23(1):28. doi: 10.3892/etm.2021.10950. Epub 2021 Nov 8.
10
Ligand-mediated delivery of RNAi-based therapeutics for the treatment of oncological diseases.
NAR Cancer. 2021 Jul 20;3(3):zcab030. doi: 10.1093/narcan/zcab030. eCollection 2021 Sep.

本文引用的文献

1
Enhancing MicroRNA Activity through Increased Endosomal Release Mediated by Nigericin.
Mol Ther Nucleic Acids. 2019 Jun 7;16:505-518. doi: 10.1016/j.omtn.2019.04.003. Epub 2019 Apr 11.
2
ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-β signalling.
Nat Commun. 2018 Nov 30;9(1):5083. doi: 10.1038/s41467-018-07497-z.
3
About miRNAs, miRNA seeds, target genes and target pathways.
Oncotarget. 2017 Nov 9;8(63):107167-107175. doi: 10.18632/oncotarget.22363. eCollection 2017 Dec 5.
4
Integration of ALV into and genes in B-cell lymphomas promotes cell immortalization, migration and survival.
Oncotarget. 2017 Jul 18;8(34):57302-57315. doi: 10.18632/oncotarget.19328. eCollection 2017 Aug 22.
5
FolamiRs: Ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer.
Sci Transl Med. 2017 Aug 2;9(401). doi: 10.1126/scitranslmed.aam9327.
7
Sulforhodamine B (SRB) Assay in Cell Culture to Investigate Cell Proliferation.
Bio Protoc. 2016 Nov 5;6(21). doi: 10.21769/BioProtoc.1984.
8
Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge.
Pharmacol Ther. 2017 Nov;179:111-126. doi: 10.1016/j.pharmthera.2017.05.009. Epub 2017 May 23.
10
miRPathDB: a new dictionary on microRNAs and target pathways.
Nucleic Acids Res. 2017 Jan 4;45(D1):D90-D96. doi: 10.1093/nar/gkw926. Epub 2016 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验