Zhu Henghui, Paschalidis Ioannis Ch, Hall Christopher, Tahmasebi Amir
Division of Systems Engineering, Boston University, Brookline, MA, USA.
Radiology Solutions, Philips Healthcare, Andover, MA, USA.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:232-241. eCollection 2019.
During a radiology reading session, it is common that the radiologist refers back to the prior history of the patient for comparison. As a result, structuring of radiology report content for seamless, fast, and accurate access is in high demand in Radiology Information Systems (RIS). A common approach for defining a structure is based on the anatomical sites of radiological observations. Nevertheless, the language used for referring to and describing anatomical regions varies quite significantly among radiologists. Conventional approaches relying on ontology-based keyword matching fail to achieve acceptable precision and recall in anatomical phrase labeling in radiology reports due to such variation in language. In this work, a novel context-driven anatomical labeling framework is proposed. The proposed framework consists of two parallel Recurrent Neural Networks (RNN), one for inferring the context of a sentence and the other for word (token)-level labeling. The proposed framework was trained on a large set of radiology reports from a clinical site and evaluated on reports from two other clinical sites. The proposed framework outperformed the state-of-the-art approaches, especially in correctly labeling ambiguous cases.
在放射科读片过程中,放射科医生常会查阅患者的既往病史以作比较。因此,放射信息系统(RIS)对放射科报告内容进行结构化处理,以实现无缝、快速且准确的访问需求很高。定义结构的一种常用方法是基于放射学观察的解剖部位。然而,放射科医生在提及和描述解剖区域时所使用的语言差异相当大。由于语言上的这种差异,传统的基于本体关键词匹配的方法在放射科报告的解剖短语标注中无法达到可接受的精确率和召回率。在这项工作中,提出了一种新颖的上下文驱动的解剖标注框架。所提出的框架由两个并行的循环神经网络(RNN)组成,一个用于推断句子的上下文,另一个用于单词(令牌)级别的标注。所提出的框架在来自一个临床站点的大量放射科报告上进行了训练,并在来自其他两个临床站点的报告上进行了评估。所提出的框架优于现有方法,尤其是在正确标注模糊病例方面。