Suppr超能文献

将i2b2扩展为一个电子健康记录语义抽象框架,以促进健康信息技术应用的快速开发和可移植性。

Extending i2b2 into a framework for semantic abstraction of EHR to facilitate rapid development and portability of Health IT applications.

作者信息

Wagholikar Kavishwar B, Ainsworth Layne, Vernekar Vishal P, Pathak Ameet, Glynn Corey, Zelle David, Zagade Akshay, Karipineni Neelima, Herrick Christopher D, McPartlin Marian, Bui Tiffany V, Mendis Mike, Klann Jeffery, Oates Michael, Gordon William, Cannon Christopher, Patel Rahul, Aronson Samuel J, MacRae Calum A, Scirica Benjamin M, Murphy Shawn N

机构信息

Harvard Medical School, Boston, MA.

Massachusetts General Hospital, Boston, MA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:370-378. eCollection 2019.

Abstract

The wide gap between a care provider's conceptualization of electronic health record (EHR) and the structures for electronic health record (EHR) data storage and transmission, presents a multitude of obstacles for development of innovative Health IT applications. While developers model the EHR view of the clinicians at one end, they work with a different data view to construct health IT applications. Although there has been considerable progress to bridge this gap by evolution of developer friendly standards and tools for terminology mapping and data warehousing, there is a need for a simplified framework to facilitate development of interoperable applications. To this end, we propose a framework for creating a layer of semantic abstraction on the EHR and describe preliminary work on the implementation of this framework for management of hyperlipidemia and hypertension. Our goal is to facilitate the rapid development and portability of Health IT applications.

摘要

医疗服务提供者对电子健康记录(EHR)的概念化与电子健康记录(EHR)数据存储和传输结构之间的巨大差距,为创新的健康信息技术应用开发带来了诸多障碍。开发者一端按照临床医生对电子健康记录的视图进行建模,而另一端他们却要使用不同的数据视图来构建健康信息技术应用。尽管通过开发对开发者友好的术语映射和数据仓库标准及工具,在弥合这一差距方面已取得了相当大的进展,但仍需要一个简化框架来促进可互操作应用的开发。为此,我们提出了一个在电子健康记录上创建语义抽象层的框架,并描述了该框架在高脂血症和高血压管理实施方面的初步工作。我们的目标是促进健康信息技术应用的快速开发和可移植性。

相似文献

3
What makes an EHR "open" or interoperable?
J Am Med Inform Assoc. 2015 Sep;22(5):1099-101. doi: 10.1093/jamia/ocv060. Epub 2015 Jun 15.
4
Electronic Health Record Implementation: A Review of Resources and Tools.
Cureus. 2019 Sep 13;11(9):e5649. doi: 10.7759/cureus.5649.
6
A Fast Healthcare Interoperability Resources (FHIR) layer implemented over i2b2.
BMC Med Inform Decis Mak. 2017 Aug 14;17(1):120. doi: 10.1186/s12911-017-0513-6.
8
Advanced and secure architectural EHR approaches.
Int J Med Inform. 2006 Mar-Apr;75(3-4):185-90. doi: 10.1016/j.ijmedinf.2005.07.017. Epub 2005 Aug 19.
9
A cloud-based approach for interoperable electronic health records (EHRs).
IEEE J Biomed Health Inform. 2013 Sep;17(5):894-906. doi: 10.1109/JBHI.2013.2257818.
10
Experiences of Transforming a Complex Nephrologic Care and Research Database into i2b2 Using the IDRT Tools.
J Healthc Eng. 2019 Jan 17;2019:5640685. doi: 10.1155/2019/5640685. eCollection 2019.

引用本文的文献

1
Use of automatic SQL generation interface to enhance transparency and validity of health-data analysis.
Inform Med Unlocked. 2022;31. doi: 10.1016/j.imu.2022.100996. Epub 2022 Jun 25.
3
Cloud Services for Patient Cohort Identification Using the Informatics for Integrating Biology and the Bedside Platform.
Biomed Res Int. 2020 Jul 7;2020:2851713. doi: 10.1155/2020/2851713. eCollection 2020.
4
Deep phenotyping: Embracing complexity and temporality-Towards scalability, portability, and interoperability.
J Biomed Inform. 2020 May;105:103433. doi: 10.1016/j.jbi.2020.103433. Epub 2020 Apr 23.

本文引用的文献

1
Implementation of informatics for integrating biology and the bedside (i2b2) platform as Docker containers.
BMC Med Inform Decis Mak. 2018 Jul 16;18(1):66. doi: 10.1186/s12911-018-0646-2.
2
Automating Installation of the Integrating Biology and the Bedside (i2b2) Platform.
Biomed Inform Insights. 2018 Jun 4;10:1178222618777749. doi: 10.1177/1178222618777749. eCollection 2018.
3
Evolving Research Data Sharing Networks to Clinical App Sharing Networks.
AMIA Jt Summits Transl Sci Proc. 2017 Jul 26;2017:302-307. eCollection 2017.
4
Modeling and validating HL7 FHIR profiles using semantic web Shape Expressions (ShEx).
J Biomed Inform. 2017 Mar;67:90-100. doi: 10.1016/j.jbi.2017.02.009. Epub 2017 Feb 16.
5
SMART-on-FHIR implemented over i2b2.
J Am Med Inform Assoc. 2017 Mar 1;24(2):398-402. doi: 10.1093/jamia/ocw079.
6
Accuracy of the Atherosclerotic Cardiovascular Risk Equation in a Large Contemporary, Multiethnic Population.
J Am Coll Cardiol. 2016 May 10;67(18):2118-2130. doi: 10.1016/j.jacc.2016.02.055.
7
Desiderata for computable representations of electronic health records-driven phenotype algorithms.
J Am Med Inform Assoc. 2015 Nov;22(6):1220-30. doi: 10.1093/jamia/ocv112. Epub 2015 Sep 5.
8
Design patterns for the development of electronic health record-driven phenotype extraction algorithms.
J Biomed Inform. 2014 Oct;51:280-6. doi: 10.1016/j.jbi.2014.06.007. Epub 2014 Jun 21.
9
Semantic ETL into i2b2 with Eureka!
AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:203-7. eCollection 2013.
10
Terminology representation guidelines for biomedical ontologies in the semantic web notations.
J Biomed Inform. 2013 Feb;46(1):128-38. doi: 10.1016/j.jbi.2012.09.003. Epub 2012 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验