Mo Huan, Thompson William K, Rasmussen Luke V, Pacheco Jennifer A, Jiang Guoqian, Kiefer Richard, Zhu Qian, Xu Jie, Montague Enid, Carrell David S, Lingren Todd, Mentch Frank D, Ni Yizhao, Wehbe Firas H, Peissig Peggy L, Tromp Gerard, Larson Eric B, Chute Christopher G, Pathak Jyotishman, Denny Joshua C, Speltz Peter, Kho Abel N, Jarvik Gail P, Bejan Cosmin A, Williams Marc S, Borthwick Kenneth, Kitchner Terrie E, Roden Dan M, Harris Paul A
Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA.
Center for Biomedical Research Informatics, NorthShore University HealthSystem, Evanston, IL, USA.
J Am Med Inform Assoc. 2015 Nov;22(6):1220-30. doi: 10.1093/jamia/ocv112. Epub 2015 Sep 5.
Electronic health records (EHRs) are increasingly used for clinical and translational research through the creation of phenotype algorithms. Currently, phenotype algorithms are most commonly represented as noncomputable descriptive documents and knowledge artifacts that detail the protocols for querying diagnoses, symptoms, procedures, medications, and/or text-driven medical concepts, and are primarily meant for human comprehension. We present desiderata for developing a computable phenotype representation model (PheRM).
A team of clinicians and informaticians reviewed common features for multisite phenotype algorithms published in PheKB.org and existing phenotype representation platforms. We also evaluated well-known diagnostic criteria and clinical decision-making guidelines to encompass a broader category of algorithms.
We propose 10 desired characteristics for a flexible, computable PheRM: (1) structure clinical data into queryable forms; (2) recommend use of a common data model, but also support customization for the variability and availability of EHR data among sites; (3) support both human-readable and computable representations of phenotype algorithms; (4) implement set operations and relational algebra for modeling phenotype algorithms; (5) represent phenotype criteria with structured rules; (6) support defining temporal relations between events; (7) use standardized terminologies and ontologies, and facilitate reuse of value sets; (8) define representations for text searching and natural language processing; (9) provide interfaces for external software algorithms; and (10) maintain backward compatibility.
A computable PheRM is needed for true phenotype portability and reliability across different EHR products and healthcare systems. These desiderata are a guide to inform the establishment and evolution of EHR phenotype algorithm authoring platforms and languages.
电子健康记录(EHRs)通过创建表型算法越来越多地用于临床和转化研究。目前,表型算法最常见的表示形式是不可计算的描述性文档和知识工件,这些文档详细说明了查询诊断、症状、程序、药物和/或文本驱动的医学概念的协议,主要用于人类理解。我们提出了开发可计算表型表示模型(PheRM)的需求。
一组临床医生和信息学家回顾了PheKB.org上发表的多站点表型算法和现有表型表示平台的共同特征。我们还评估了著名的诊断标准和临床决策指南,以涵盖更广泛的算法类别。
我们为灵活、可计算的PheRM提出了10个期望的特征:(1)将临床数据结构化为可查询的形式;(2)建议使用通用数据模型,但也支持针对各站点EHR数据的可变性和可用性进行定制;(3)支持表型算法的人类可读和可计算表示;(4)实现用于表型算法建模的集合运算和关系代数;(5)用结构化规则表示表型标准;(6)支持定义事件之间的时间关系;(7)使用标准化术语和本体,并促进值集的重用;(8)定义文本搜索和自然语言处理的表示;(9)为外部软件算法提供接口;(10)保持向后兼容性。
需要一个可计算的PheRM来实现不同EHR产品和医疗保健系统之间真正的表型可移植性和可靠性。这些需求是指导EHR表型算法创作平台和语言的建立和发展的指南。