Suppr超能文献

迈向用于心脏病变质量评估的实时多光谱内镜成像。

Towards real-time multispectral endoscopic imaging for cardiac lesion quality assessment.

作者信息

Park Soo Young, Singh-Moon Rajinder P, Wan Elaine Y, Hendon Christine P

机构信息

Department of Electrical Engineering, Columbia University, 500 W 120th Street, New York, NY, 10027, USA.

Department of Medicine, Division of Cardiology, Columbia University Medical Center, 630 W 168th Street, New York, NY, 10032, USA.

出版信息

Biomed Opt Express. 2019 May 16;10(6):2829-2846. doi: 10.1364/BOE.10.002829. eCollection 2019 Jun 1.

Abstract

Atrial fibrillation (Afib) can lead to life threatening conditions such as heart failure and stroke. During Afib treatment, clinicians aim to repress unusual electrical activity by electrically isolating the pulmonary veins (PV) from the left atrium (LA) using radiofrequency ablation. However, current clinical tools are limited in reliably assessing transmurality of the ablation lesions and detecting the presence of gaps within ablation lines, which can warrant repeat procedures. In this study, we developed an endoscopic multispectral reflectance imaging (eMSI) system for enhanced discrimination of tissue treatment at the PV junction. The system enables direct visualization of cardiac lesions through an endoscope at acquisition rates up to 25 Hz. Five narrowband, high-power LEDs were used to illuminate the sample (450, 530, 625, 810 and 940nm) and combinatory parameters were calculated based on their relative reflectance. A stitching algorithm was employed to generate large field-of-view, multispectral mosaics of the ablated PV junction from individual eMSI images. A total of 79 lesions from 15 swine hearts were imaged, . Statistical analysis of the acquired five spectral data sets and ratiometric maps revealed significant differences between transmural lesions, non-transmural lesions around the venoatrial junctions, unablated posterior wall of left atrium tissue, and pulmonary vein (p < 0.0001). A pixel-based quadratic discriminant analysis classifier was applied to distinguish four tissue types: PV, untreated LA, non-transmural and transmural lesions. We demonstrate tissue type classification accuracies of 80.2% and 92.1% for non-transmural and transmural lesions, and 95.0% and 92.8% for PV and untreated LA sites, respectively. These findings showcase the potential of eMSI for lesion validation and may help to improve AFib treatment efficacy.

摘要

心房颤动(房颤)可导致心力衰竭和中风等危及生命的状况。在房颤治疗期间,临床医生旨在通过使用射频消融术将肺静脉(PV)与左心房(LA)进行电隔离,从而抑制异常电活动。然而,当前的临床工具在可靠评估消融灶的透壁性以及检测消融线内间隙的存在方面存在局限性,这可能需要重复手术。在本研究中,我们开发了一种内镜多光谱反射成像(eMSI)系统,用于增强对PV交界处组织治疗的辨别能力。该系统能够通过内窥镜以高达25Hz的采集速率直接观察心脏病变。使用五个窄带、高功率发光二极管对样本进行照明(450、530、625、810和940nm),并根据它们的相对反射率计算组合参数。采用拼接算法从单个eMSI图像生成消融PV交界处的大视野多光谱镶嵌图。对15头猪心脏的79个病变进行了成像。对获取的五个光谱数据集和比率图进行统计分析,结果显示透壁病变、静脉心房交界处周围的非透壁病变、未消融的左心房后壁组织以及肺静脉之间存在显著差异(p<0.0001)。应用基于像素的二次判别分析分类器来区分四种组织类型:PV、未处理的LA、非透壁和透壁病变。我们分别展示了非透壁和透壁病变的组织类型分类准确率为80.2%和92.1%,PV和未处理的LA部位的分类准确率分别为95.0%和92.8%。这些发现展示了eMSI在病变验证方面的潜力,并可能有助于提高房颤治疗效果。

相似文献

1
Towards real-time multispectral endoscopic imaging for cardiac lesion quality assessment.
Biomed Opt Express. 2019 May 16;10(6):2829-2846. doi: 10.1364/BOE.10.002829. eCollection 2019 Jun 1.
2
Comparison of bipolar and unipolar radiofrequency ablation in an in vivo experimental model.
Eur J Cardiothorac Surg. 2005 Jul;28(1):76-80; discussion 80-2. doi: 10.1016/j.ejcts.2005.02.028. Epub 2005 Apr 7.
6
Dosing of the second-generation cryoballoon using acute time-to-pulmonary vein isolation as an indicator of durable ablation in a canine model.
J Interv Card Electrophysiol. 2018 Dec;53(3):293-300. doi: 10.1007/s10840-018-0346-y. Epub 2018 Apr 14.

引用本文的文献

1
Optical coherence tomography-enabled classification of the human venoatrial junction.
J Biomed Opt. 2025 Jan;30(1):016005. doi: 10.1117/1.JBO.30.1.016005. Epub 2025 Jan 21.
2
Monitoring of irrigated lesion formation with single fiber based multispectral system using machine learning.
J Biophotonics. 2022 Sep;15(9):e202100374. doi: 10.1002/jbio.202100374. Epub 2022 Jun 15.
3
Cardiac endocardial left atrial substrate and lesion depth mapping using near-infrared spectroscopy.
Biomed Opt Express. 2022 Mar 2;13(4):1801-1819. doi: 10.1364/BOE.451547. eCollection 2022 Apr 1.
5
Quantification of irrigated lesion morphology using near-infrared spectroscopy.
Sci Rep. 2021 Oct 11;11(1):20160. doi: 10.1038/s41598-021-99725-8.
6
Feasibility of near-infrared spectroscopy as a tool for anatomical mapping of the human epicardium.
Biomed Opt Express. 2020 Jul 8;11(8):4099-4109. doi: 10.1364/BOE.394294. eCollection 2020 Aug 1.
7
A Percutaneous Catheter for In Vivo Hyperspectral Imaging of Cardiac Tissue: Challenges, Solutions and Future Directions.
Cardiovasc Eng Technol. 2020 Oct;11(5):560-575. doi: 10.1007/s13239-020-00476-w. Epub 2020 Jul 14.
8
Real-time photoacoustic assessment of radiofrequency ablation lesion formation in the left atrium.
Photoacoustics. 2019 Nov 30;16:100150. doi: 10.1016/j.pacs.2019.100150. eCollection 2019 Dec.

本文引用的文献

1
Mapping the human pulmonary venoatrial junction with optical coherence tomography.
Biomed Opt Express. 2019 Jan 7;10(2):434-448. doi: 10.1364/BOE.10.000434. eCollection 2019 Feb 1.
2
High-Power and Short-Duration Ablation for Pulmonary Vein Isolation: Biophysical Characterization.
JACC Clin Electrophysiol. 2018 Apr;4(4):467-479. doi: 10.1016/j.jacep.2017.11.018. Epub 2018 Feb 2.
3
Real-time optical spectroscopic monitoring of nonirrigated lesion progression within atrial and ventricular tissues.
J Biophotonics. 2019 Apr;12(4):e201800144. doi: 10.1002/jbio.201800144. Epub 2018 Dec 26.
4
Spectroscopic photoacoustic imaging of radiofrequency ablation in the left atrium.
Biomed Opt Express. 2018 Feb 23;9(3):1309-1322. doi: 10.1364/BOE.9.001309. eCollection 2018 Mar 1.
5
Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions.
Heart Rhythm. 2018 Apr;15(4):564-575. doi: 10.1016/j.hrthm.2017.12.014. Epub 2017 Dec 12.
6
Multicontrast endomyocardial imaging by single-channel high-resolution cross-polarization optical coherence tomography.
J Biophotonics. 2018 Apr;11(4):e201700204. doi: 10.1002/jbio.201700204. Epub 2018 Jan 10.
7
Seeing the Invisible: Revealing Atrial Ablation Lesions Using Hyperspectral Imaging Approach.
PLoS One. 2016 Dec 8;11(12):e0167760. doi: 10.1371/journal.pone.0167760. eCollection 2016.
8
Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue.
J Biophotonics. 2017 Aug;10(8):1008-1017. doi: 10.1002/jbio.201600071. Epub 2016 Aug 22.
9
Automated classification of optical coherence tomography images of human atrial tissue.
J Biomed Opt. 2016 Oct;21(10):101407. doi: 10.1117/1.JBO.21.10.101407.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验