Suppr超能文献

基于机器学习的单纤维多光谱系统监测灌流损伤形成。

Monitoring of irrigated lesion formation with single fiber based multispectral system using machine learning.

机构信息

Department of Electrical Engineering, Columbia University, New York, New York, USA.

出版信息

J Biophotonics. 2022 Sep;15(9):e202100374. doi: 10.1002/jbio.202100374. Epub 2022 Jun 15.

Abstract

In radiofrequency ablation (RFA) treatment of cardiac arrhythmias, intraprocedural assessment of treatment efficacy relies on indirect measures of adequate tissue destruction. Direct sensing of diffuse reflectance spectral changes at the ablation site using optically integrated RFA catheters has been shown to enable accurate prediction of lesion dimensions, ex vivo. Challenges of optical guidance can be due to obtaining reliable measurements under various catheter-tissue contact orientations. In this work, addressed this limitation by assessing the feasibility of monitoring lesion progression using single-fiber reflectance spectroscopy (SFRS). A total of 110 endocardial lesions of various sizes were generated in freshly excised swine right ventricular tissue using a custom-built, irrigated SFRS-RFA catheter. Models were developed for assessing catheter-tissue contact, the presence of nontransmural or transmural lesions and lesion depth percentage. These results support the use of SFRS-based catheters for irrigated lesion assessment and motivate further exploration of using multi-SFRS catheters for omnidirectionality.

摘要

在心脏节律失常的射频消融 (RFA) 治疗中,术中评估治疗效果依赖于对充分组织破坏的间接测量。使用光学集成的 RFA 导管对消融部位的漫反射光谱变化进行直接检测,已被证明能够准确预测离体情况下的病变尺寸。光学引导的挑战可能源于在各种导管-组织接触方向下获得可靠的测量结果。在这项工作中,通过评估使用单纤维反射光谱 (SFRS) 监测病变进展的可行性来解决这一限制。使用定制的、灌流的 SFRS-RFA 导管在新鲜取出的猪右心室组织中产生了大小不同的总共 110 个心内膜病变。开发了用于评估导管-组织接触、非穿透性或穿透性病变以及病变深度百分比的模型。这些结果支持使用基于 SFRS 的导管进行灌流病变评估,并激发了对使用多 SFRS 导管进行全方位评估的进一步探索。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验