Bourrianne Philippe, Lv Cunjing, Quéré David
Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, PSL Research University, 75005 Paris, France.
Sci Adv. 2019 Jun 28;5(6):eaaw0304. doi: 10.1126/sciadv.aaw0304. eCollection 2019 Jun.
Superhydrophobicity (observed at room temperature) and Leidenfrost phenomenon (observed on very hot solids) are classical examples of nonwetting surfaces. It was found that combining the two effects by heating water-repellent materials leads to a marked yet unexplained decrease of the Leidenfrost temperature of water. We discuss here how heat enhances superhydrophobicity by favoring a "cold Leidenfrost regime" where water adhesion becomes nonmeasurable even at moderate substrate temperature. Heat is found to induce contradictory effects (sticking due to vapor condensation, and lift due to the spreading of vapor patches), which is eventually shown to be controllable by the solid surface texture. The transition to the levitating Leidenfrost regime is observed to be continuous as a function of temperature, contrasting with the transition on common solids.
超疏水性(在室温下观察到)和莱顿弗罗斯特现象(在非常热的固体上观察到)是非润湿性表面的经典例子。研究发现,通过加热疏水材料将这两种效应结合起来会导致水的莱顿弗罗斯特温度显著降低,但原因尚不明。我们在此讨论热量如何通过促成一种“冷莱顿弗罗斯特状态”来增强超疏水性,在这种状态下,即使在中等的基底温度下,水的附着力也变得无法测量。研究发现热量会引发相互矛盾的效应(由于蒸汽凝结导致的黏附以及由于蒸汽斑扩散导致的提升),最终表明这种效应可由固体表面纹理控制。观察到向悬浮莱顿弗罗斯特状态的转变随温度连续变化,这与普通固体上的转变形成对比。