Suppr超能文献

用于 ABR 检测的分组序贯检验。

A group sequential test for ABR detection.

机构信息

Faculty of Engineering and the Environment, Institute of Sound and Vibration Research, University of Southampton , UK.

Interacoustics Research Unit, c/o Technical University of Denmark , Denmark.

出版信息

Int J Audiol. 2019 Oct;58(10):618-627. doi: 10.1080/14992027.2019.1625486. Epub 2019 Jul 1.

Abstract

To detect the auditory brainstem response (ABR) automatically using an innovative sequentially applied Hotelling's   test, with the overall goal of optimising test time whilst controlling the false-positive rate (FPR). The stage-wise critical decision boundaries for accepting or rejecting the null hypothesis were found using a new approach called the Convolutional Group Sequential Test (CGST). Specificity, sensitivity, and test time were evaluated using simulations and subject recorded data. Data consists of click-evoked ABR threshold series from 12 normal hearing adults, and recordings of EEG background activity from 17 normal hearing adults. Reductions in test time of up to 40-45% were observed for the sequential test, relative to a conventional "single shot" test where the statistical test is applied to the data just once. To obtain these results, it will occasionally be necessary to run the test to a higher number of stimuli, i.e. the maximum test time needs to be increased. The CGST can be used to control the specificity of a sequentially applied ABR detection method. Doing so can reduce test time, relative to the "single shot" test, when considered across a cohort of test subjects.

摘要

为了使用创新的顺序应用的 Hotelling 检验自动检测听觉脑干反应(ABR),总体目标是优化测试时间,同时控制假阳性率(FPR)。使用一种称为卷积组序贯检验(CGST)的新方法找到了接受或拒绝零假设的分阶段临界决策边界。使用模拟和受试者记录的数据评估了特异性、敏感性和测试时间。数据包括来自 12 名正常听力成年人的点击诱发 ABR 阈值序列,以及来自 17 名正常听力成年人的 EEG 背景活动记录。与传统的“单次拍摄”测试相比,顺序测试可将测试时间减少多达 40-45%,在传统的“单次拍摄”测试中,统计测试仅应用于数据一次。为了获得这些结果,有时可能需要将测试运行到更高数量的刺激,即需要增加最大测试时间。CGST 可用于控制顺序应用的 ABR 检测方法的特异性。当考虑到一组测试对象时,与“单次拍摄”测试相比,这样做可以减少测试时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验