Zhou Chunhua, Cao Guiyuan, Gan Zhixing, Ou Qingdong, Chen Weijian, Bao Qiaoliang, Jia Baohua, Wen Xiaoming
Centre for Translational Atomaterials , Swinburne University of Technology , Hawthorn 3122 , Australia.
Jiangsu Key Lab of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology , Nanjing Normal University , Nanjing 210023 , China.
ACS Appl Mater Interfaces. 2019 Jul 24;11(29):26017-26023. doi: 10.1021/acsami.9b07708. Epub 2019 Jul 12.
Lead halide perovskites are widely applied in not only photovoltaics but also on-chip light sources and photon detection. To promote the incorporation of perovskite into integrated devices, microscale color patterning flexibility is a very important step. Here, we demonstrate spatially resolved modulation of the fluorescence of nanoplatelets (NPs) by femtosecond direct laser writing (fs-DLW). As the perovskite NP for the fs-DLW pattern is specially designed with a gradual bromide-iodide composition along the depth, the replacement of iodide ions by bromide ions can be activated under a controlled laser pulse and fluorescence is thus modulated from red to green. The effect of processing depth and NP thickness on fluorescence modulation is systemically investigated. The as-grown thick NP (thickness ≈ 500 nm) mainly exhibits a 690 nm emission from the bottom iodine-rich phase. After halide substitution induced by fs-DLW, a new fluorescence peak appears in the wavelength range of 540-600 nm; the peak position and intensity are controlled by the DLW conditions. The fluorescent color is spatially modulated from red to green, enabling microscale-resolved multicolor emission. Compared with other currently available techniques, microscale color patterning via fs-DLW is a straightforward mask-free one-step operation, yielding high spatial resolution and enabling three-dimensional patterning by the multiple-photon method. We demonstrate that arbitrary patterns can be drawn on a wide range of perovskite NPs, implying the potential applications in microencryption, sensors, multicolor displays, lasers, and light-emitting devices.
卤化铅钙钛矿不仅广泛应用于光伏领域,还应用于片上光源和光子探测。为了促进钙钛矿在集成器件中的应用,微尺度颜色图案化的灵活性是非常重要的一步。在此,我们展示了通过飞秒直接激光写入(fs-DLW)对纳米片(NP)荧光进行空间分辨调制。由于用于fs-DLW图案的钙钛矿NP是沿着深度方向专门设计了逐渐变化的溴化物 - 碘化物组成,在可控的激光脉冲下,碘离子可以被溴离子取代,从而使荧光从红色调制为绿色。系统地研究了加工深度和NP厚度对荧光调制的影响。生长的厚NP(厚度约为500 nm)主要从底部富碘相发出690 nm的发射光。在fs-DLW诱导卤化物取代后,在540 - 600 nm波长范围内出现一个新的荧光峰;峰位置和强度由DLW条件控制。荧光颜色在空间上从红色调制为绿色,实现了微尺度分辨的多色发射。与目前其他可用技术相比,通过fs-DLW进行微尺度颜色图案化是一种直接的无掩模一步操作,具有高空间分辨率,并能够通过多光子方法进行三维图案化。我们证明可以在各种钙钛矿NP上绘制任意图案,这意味着在微加密、传感器、多色显示器、激光器和发光器件等方面具有潜在应用。