Suppr超能文献

探讨 Notch 通路以阐明胶质瘤中的表型可塑性和肿瘤内异质性。

Exploring Notch Pathway to Elucidate Phenotypic Plasticity and Intra-tumor Heterogeneity in Gliomas.

机构信息

Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India.

Academy of Scientific & Innovative Research (AcSIR), CSIR-NCL Campus, Pune, India.

出版信息

Sci Rep. 2019 Jul 1;9(1):9488. doi: 10.1038/s41598-019-45892-8.

Abstract

The phenotypic plasticity and self-renewal of adult neural (aNSCs) and glioblastoma stem cells (GSCs) are both known to be governed by active Notch pathway. During development, GSCs can establish differential hierarchy to produce heterogeneous groups of tumor cells belong to different grades, which makes the tumor ecosystem more complex. However, the molecular events regulating these entire processes are unknown hitherto. In this work, based on the mechanistic regulations of Notch pathway activities, a novel computational framework is introduced to inspect the intra-cellular reactions behind the development of normal and tumorigenic cells from aNSCs and GSCs, respectively. The developmental dynamics of aNSCs/GSCs are successfully simulated and molecular activities regulating the phenotypic plasticity and self-renewal processes in normal and tumor cells are identified. A novel scoring parameter "Activity Ratio" score is introduced to find out driver molecules responsible for the phenotypic plasticity and development of different grades of tumor. A new quantitative method is also developed to predict the future risk of Glioblastoma tumor of an individual with appropriate grade by using the transcriptomics profile of that individual as input. Also, a novel technique is introduced to screen and rank the potential drug-targets for suppressing the growth and differentiation of tumor cells.

摘要

已知成人神经(aNSC)和神经胶质瘤干细胞(GSCs)的表型可塑性和自我更新都受活跃的 Notch 途径调控。在发育过程中,GSCs 可以建立差异层次结构,产生属于不同等级的异质肿瘤细胞群体,这使得肿瘤生态系统更加复杂。然而,迄今为止,调节这些整个过程的分子事件尚不清楚。在这项工作中,基于 Notch 途径活性的机制调节,引入了一种新的计算框架,分别检查来自 aNSC 和 GSC 的正常和致瘤细胞发育背后的细胞内反应。成功模拟了 aNSC/GSC 的发育动力学,并确定了调节正常和肿瘤细胞表型可塑性和自我更新过程的分子活性。引入了一个新的评分参数“活性比”评分,以找出负责不同等级肿瘤表型可塑性和发育的驱动分子。还开发了一种新的定量方法,通过使用个体的转录组学特征作为输入,预测具有适当等级的个体患胶质母细胞瘤肿瘤的未来风险。此外,还引入了一种新的技术来筛选和排名潜在的药物靶点,以抑制肿瘤细胞的生长和分化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eba/6602950/7da87ea49d2b/41598_2019_45892_Fig1_HTML.jpg

相似文献

2
Alpinetin targets glioma stem cells by suppressing Notch pathway.
Tumour Biol. 2016 Jul;37(7):9243-8. doi: 10.1007/s13277-016-4827-2. Epub 2016 Jan 15.
6
Wnt and Notch signaling govern self-renewal and differentiation in a subset of human glioblastoma stem cells.
Genes Dev. 2019 May 1;33(9-10):498-510. doi: 10.1101/gad.321968.118. Epub 2019 Mar 6.
9
A Tumor Suppressor Function for Notch Signaling in Forebrain Tumor Subtypes.
Cancer Cell. 2015 Dec 14;28(6):730-742. doi: 10.1016/j.ccell.2015.10.008. Epub 2015 Dec 5.
10
ADAM17 regulates self-renewal and differentiation of U87 glioblastoma stem cells.
Neurosci Lett. 2013 Mar 14;537:44-9. doi: 10.1016/j.neulet.2013.01.021. Epub 2013 Jan 26.

引用本文的文献

2
.
J Biosci. 2022;47(2). doi: 10.1007/s12038-022-00253-y.
3
Adult immuno-oncology: using past failures to inform the future.
Neuro Oncol. 2020 Sep 29;22(9):1249-1261. doi: 10.1093/neuonc/noaa116.

本文引用的文献

1
Adult neural stem cell plasticity.
Neural Regen Res. 2019 Feb;14(2):256-257. doi: 10.4103/1673-5374.244785.
2
Impaired Notch Signaling Leads to a Decrease in p53 Activity and Mitotic Catastrophe in Aged Muscle Stem Cells.
Cell Stem Cell. 2018 Oct 4;23(4):544-556.e4. doi: 10.1016/j.stem.2018.08.019. Epub 2018 Sep 20.
3
New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells.
Cell Biol Toxicol. 2018 Dec;34(6):425-440. doi: 10.1007/s10565-017-9420-y. Epub 2018 Jan 31.
6
Interplay between Notch and p53 promotes neuronal cell death in ischemic stroke.
J Cereb Blood Flow Metab. 2018 Oct;38(10):1781-1795. doi: 10.1177/0271678X17715956. Epub 2017 Jun 15.
7
Intra-tumor heterogeneity from a cancer stem cell perspective.
Mol Cancer. 2017 Feb 16;16(1):41. doi: 10.1186/s12943-017-0600-4.
8
Directional entropy based model for diffusivity-driven tumor growth.
Math Biosci Eng. 2016 Apr 1;13(2):333-41. doi: 10.3934/mbe.2015005.
9
Control of complex networks requires both structure and dynamics.
Sci Rep. 2016 Apr 18;6:24456. doi: 10.1038/srep24456.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验