文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CB-Dock:一个用于腔检测引导的蛋白质-配体盲目对接的网络服务器。

CB-Dock: a web server for cavity detection-guided protein-ligand blind docking.

机构信息

Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.

Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, Shanghai 201203, China.

出版信息

Acta Pharmacol Sin. 2020 Jan;41(1):138-144. doi: 10.1038/s41401-019-0228-6. Epub 2019 Jul 1.


DOI:10.1038/s41401-019-0228-6
PMID:31263275
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7471403/
Abstract

As the number of elucidated protein structures is rapidly increasing, the growing data call for methods to efficiently exploit the structural information for biological and pharmaceutical purposes. Given the three-dimensional (3D) structure of a protein and a ligand, predicting their binding sites and affinity are a key task for computer-aided drug discovery. To address this task, a variety of docking tools have been developed. Most of them focus on docking in the preset binding sites given by users. To automatically predict binding modes without information about binding sites, we developed a user-friendly blind docking web server, named CB-Dock, which predicts binding sites of a given protein and calculates the centers and sizes with a novel curvature-based cavity detection approach, and performs docking with a popular docking program, Autodock Vina. This method was carefully optimized and achieved ~70% success rate for the top-ranking poses whose root mean square deviation (RMSD) were within 2 Å from the X-ray pose, which outperformed the state-of-the-art blind docking tools in our benchmark tests. CB-Dock offers an interactive 3D visualization of results, and is freely available at http://cao.labshare.cn/cb-dock/.

摘要

随着已阐明蛋白质结构数量的快速增加,不断增长的数据需要高效利用结构信息的方法,以用于生物和制药目的。给定蛋白质和配体的三维 (3D) 结构,预测它们的结合位点和亲和力是计算机辅助药物发现的关键任务。为了解决这个问题,已经开发了多种对接工具。其中大多数都集中在根据用户给定的预设结合位点进行对接。为了在没有结合位点信息的情况下自动预测结合模式,我们开发了一个用户友好的盲目对接网络服务器,名为 CB-Dock,它预测给定蛋白质的结合位点,并使用新颖的基于曲率的腔检测方法计算中心和大小,并使用流行的对接程序 Autodock Vina 进行对接。该方法经过仔细优化,在我们的基准测试中,其排名前几位的构象的成功率约为 70%,这些构象的均方根偏差 (RMSD) 在 2Å以内,优于最先进的盲目对接工具。CB-Dock 提供了结果的交互式 3D 可视化,并可在 http://cao.labshare.cn/cb-dock/ 上免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/8a314d87148f/41401_2019_228_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/3c39469bee7d/41401_2019_228_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/08609ca0af51/41401_2019_228_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/2c3ff45b75c7/41401_2019_228_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/c688ec632c1b/41401_2019_228_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/8a314d87148f/41401_2019_228_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/3c39469bee7d/41401_2019_228_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/08609ca0af51/41401_2019_228_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/2c3ff45b75c7/41401_2019_228_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/c688ec632c1b/41401_2019_228_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ba/7656838/8a314d87148f/41401_2019_228_Fig5_HTML.jpg

相似文献

[1]
CB-Dock: a web server for cavity detection-guided protein-ligand blind docking.

Acta Pharmacol Sin. 2019-7-1

[2]
CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting.

Nucleic Acids Res. 2022-7-5

[3]
FitDock: protein-ligand docking by template fitting.

Brief Bioinform. 2022-5-13

[4]
istar: a web platform for large-scale protein-ligand docking.

PLoS One. 2014-1-24

[5]
DrugRep: an automatic virtual screening server for drug repurposing.

Acta Pharmacol Sin. 2023-4

[6]
The Performance of Several Docking Programs at Reproducing Protein-Macrolide-Like Crystal Structures.

Molecules. 2017-1-17

[7]
Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.

Phys Chem Chem Phys. 2016-5-14

[8]
COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking.

Nucleic Acids Res. 2018-7-2

[9]
Boosted neural networks scoring functions for accurate ligand docking and ranking.

J Bioinform Comput Biol. 2018-4

[10]
Protein-Ligand Blind Docking Using CB-Dock2.

Methods Mol Biol. 2024

引用本文的文献

[1]
Expanding structural insights into DNA packaging apparatus and endolysin LysSA05 function of Epsilon15 bacteriophage.

Front Cell Infect Microbiol. 2025-8-14

[2]
Orange peel extract and hesperidin attenuate myeloperoxidase activity and oxidative stress in vitro, with anti-inflammatory effects in vivo: a natural approach to gingival protection.

Inflammopharmacology. 2025-9-1

[3]
Decoding the PTTG family's contribution to LUAD pathogenesis: a comprehensive study on expression, epigenetics, and therapeutic interventions.

Hereditas. 2025-8-28

[4]
Identification of Ifitm1 as a Pivotal Gene in Mouse Spinal Cord Injury Using Comprehensive Machine Learning Algorithms.

Mediators Inflamm. 2025-8-11

[5]
PGAP1-Related Encephalopathy in an Infant With Neurodevelopmental Delay: Novel Variant and Review of Literature.

Int J Dev Neurosci. 2025-8

[6]
Metabolomics and network analysis reveal the mechanism of Salvia miltiorrhiza bunge extract in ameliorating cognitive dysfunction in sleep-deprived rats.

Sci Rep. 2025-8-7

[7]
Inhibition of breast cancer resistance protein by flavonols: in vitro, in vivo, and in silico implications of the interactions.

Sci Rep. 2025-8-5

[8]
Comprehensive characterization of multi-omics landscapes between gut microbial metabolites and the druggable genome in sepsis.

Front Immunol. 2025-7-21

[9]
Hybrid protein-ligand binding residue prediction with protein language models: does the structure matter?

Bioinformatics. 2025-8-2

[10]
The Construction of ceRNA Regulatory Network Unraveled Prognostic Biomarkers and Repositioned Drug Candidates for the Management of Pancreatic Ductal Adenocarcinoma.

Curr Issues Mol Biol. 2025-6-27

本文引用的文献

[1]
NGL viewer: web-based molecular graphics for large complexes.

Bioinformatics. 2018-11-1

[2]
COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking.

Nucleic Acids Res. 2018-7-2

[3]
CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction.

Nucleic Acids Res. 2018-7-2

[4]
Evaluation of Protein-Ligand Docking by Cyscore.

Methods Mol Biol. 2018

[5]
Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration.

Sci Rep. 2017-11-13

[6]
Protein-ligand docking using FFT based sampling: D3R case study.

J Comput Aided Mol Des. 2017-11-3

[7]
RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education.

Protein Sci. 2018-1

[8]
Ligand-biased ensemble receptor docking (LigBEnD): a hybrid ligand/receptor structure-based approach.

J Comput Aided Mol Des. 2017-9-8

[9]
Software for molecular docking: a review.

Biophys Rev. 2017-4

[10]
Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.

Acc Chem Res. 2017-2-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索