脓毒症中肠道微生物代谢产物与可药物基因组之间多组学景观的综合表征。
Comprehensive characterization of multi-omics landscapes between gut microbial metabolites and the druggable genome in sepsis.
作者信息
Liu Jun, Li Tong, Xin Li, Li Xingyu, Zhang Jianbo, Zhu Peng
机构信息
Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
出版信息
Front Immunol. 2025 Jul 21;16:1597676. doi: 10.3389/fimmu.2025.1597676. eCollection 2025.
BACKGROUND
Sepsis is a life-threatening condition with limited therapeutic options. Emerging evidence implicates gut microbial metabolites in modulating host immunity, but the specific interactions between these metabolites and host druggable targets remain poorly understood.
METHODS
We utilized a systems biology framework integrating genetic analyses, multi-omics profiling, and structure-based virtual screening to systematically map the interaction landscape between human gut microbial metabolites and druggable G-protein-coupled receptors (GPCRs), ion channels (ICs), and kinases (termed the "GIKome") in sepsis. Key findings were validated by molecular dynamics (MD) simulation, microscale thermophoresis (MST), and functional assays in a murine cecal ligation and puncture (CLP) model of sepsis.
RESULTS
We evaluated 190,950 metabolite-protein interactions, linking 114 sepsis-related GIK targets to 335 gut microbial metabolites, and prioritized indole-3-lactic acid (ILA), a metabolite enriched in , as a promising therapeutic candidate. MD simulation and MST further revealed that ILA binds stably to PFKFB2, a pivotal kinase in regulating glycolytic flux and immune activation during sepsis. , ILA administration improved survival, attenuated cytokine storm, and mitigated multi-organ injury in CLP-induced septic mice.
CONCLUSIONS
This systems-level investigation unveils previously unrecognized therapeutic targets, offering a blueprint for microbiota-based precision interventions in critical care medicine.
背景
脓毒症是一种危及生命的疾病,治疗选择有限。新出现的证据表明肠道微生物代谢产物参与调节宿主免疫,但这些代谢产物与宿主可成药靶点之间的具体相互作用仍知之甚少。
方法
我们利用一个整合了基因分析、多组学分析和基于结构的虚拟筛选的系统生物学框架,系统地描绘人类肠道微生物代谢产物与脓毒症中可成药的G蛋白偶联受体(GPCRs)、离子通道(ICs)和激酶(称为“GIKome”)之间的相互作用图谱。关键发现通过分子动力学(MD)模拟、微量热泳动(MST)以及脓毒症小鼠盲肠结扎和穿刺(CLP)模型中的功能试验进行验证。
结果
我们评估了190,950种代谢产物 - 蛋白质相互作用,将114个与脓毒症相关的GIK靶点与335种肠道微生物代谢产物联系起来,并将吲哚 - 3 - 乳酸(ILA)作为一种有前景的治疗候选物进行了优先排序,ILA是一种在 中富集的代谢产物。MD模拟和MST进一步揭示ILA与PFKFB2稳定结合,PFKFB2是脓毒症期间调节糖酵解通量和免疫激活的关键激酶。 ,在CLP诱导的脓毒症小鼠中,给予ILA可提高生存率、减轻细胞因子风暴并减轻多器官损伤。
结论
这项系统水平的研究揭示了以前未被认识的治疗靶点,为重症医学中基于微生物群的精准干预提供了蓝图。