Zink-Lorre Nathalie, Font-Sanchis Enrique, Seetharaman Sairaman, Karr Paul A, Sastre-Santos Ángela, D'Souza Francis, Fernández-Lázaro Fernando
Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202, Elche, Spain.
Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA.
Chemistry. 2019 Aug 1;25(43):10123-10132. doi: 10.1002/chem.201900973. Epub 2019 Jul 2.
Directly linked to promote strong intramolecular interactions, donor-acceptor dyads and a donor-acceptor-donor triad featuring zinc phthalocyanine (ZnPc) as electron donor and perylenediimide (PDI) as electron acceptor have been synthesized and characterized. Owing to complementary absorption features of the entities, improved light absorption was witnessed in these conjugates. The optimized geometry and electronic structures showed the majority of the highest occupied molecular orbital (HOMO) on the ZnPc entity, whereas the lowest unoccupied molecular orbital (LUMO) was on the PDI entity, suggesting that the charge-separated states would be ZnPc -PDI . The electrochemical and free-energy calculations suggested exothermic energy and/or electron transfer processes via the singlet states of PDI or ZnPc entities depending on the excitation wavelength of the laser used. The measured rates using femtosecond pump-probe spectroscopy coupled with global analysis of transient data revealed ultrafast energy transfer from PDI* to ZnPc followed by charge separation. However, when ZnPc was selectively excited, only electron transfer was witnessed wherein the time constants for forward and reverse electron transfer processes followed Marcus predictions. The absorption in a wide section of the solar spectrum and the ultrafast charge separation suggest the usefulness of these systems as good photosynthetic models.
以锌酞菁(ZnPc)作为电子供体、苝二酰亚胺(PDI)作为电子受体,合成并表征了直接相连以促进强分子内相互作用的供体-受体二元体以及供体-受体-供体三元体。由于各实体具有互补的吸收特性,在这些共轭物中观察到光吸收得到了改善。优化的几何结构和电子结构表明,最高占据分子轨道(HOMO)大部分位于ZnPc实体上,而最低未占据分子轨道(LUMO)位于PDI实体上,这表明电荷分离态将是ZnPc -PDI 。电化学和自由能计算表明,根据所使用激光的激发波长,通过PDI或ZnPc实体的单重态会发生放热能量和/或电子转移过程。使用飞秒泵浦-探测光谱结合瞬态数据的全局分析所测得的速率表明,从PDI*到ZnPc存在超快能量转移,随后发生电荷分离。然而,当选择性激发ZnPc时,仅观察到电子转移,其中正向和反向电子转移过程的时间常数符合Marcus预测。在太阳光谱的宽波段内的吸收以及超快电荷分离表明这些体系作为良好的光合作用模型具有实用性。