Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, Thailand.
Division of Clinical Epidemiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
J Perinat Med. 2019 Aug 27;47(6):643-650. doi: 10.1515/jpm-2018-0347.
Objective To derive and validate a population-specific multivariate approach for birth weight (BW) prediction based on quantitative intrapartum assessment of maternal characteristics by means of an algorithmic method in low-risk women. Methods The derivation part (n = 200) prospectively explored 10 variables to create the best-fit algorithms (70% correct estimates within ±10% of actual BW) for prediction of BW at term; vertex presentation with engagement. The algorithm was then cross validated with samples of unrelated cases (n = 280) to compare the accuracy with the routine abdominal palpation method. Results The best-fit algorithms were parity-specific. The derived simplified algorithms were (1) BW (g) = 100 [(0.42 × symphysis-fundal height (SFH; cm)) + gestational age at delivery (GA; weeks) - 25] in nulliparous, and (2) BW (g) = 100 [(0.42 × SFH (cm)) + GA - 23] in multiparous. Cross validation showed an overall 69.3% accuracy within ±10% of actual BW, which exceeded routine abdominal palpation (60.4%) (P = 0.019). The algorithmic BW prediction was significantly more accurate than routine abdominal palpation in women with the following characteristics: BW 2500-4000 g, multiparous, pre-pregnancy weight <50 kg, current weight <60 kg, height <155 cm, body mass index (BMI) <18.5 kg/m2, cervical dilatation 3-5 cm, station <0, intact membranes, SFH 30-39 cm, maternal abdominal circumference (mAC) <90 cm, mid-upper arm circumference (MUAC) <25 cm and female gender of the neonates (P < 0.05). Conclusion An overall accuracy of term BW prediction by our simplified algorithms exceeded that of routine abdominal palpation.
基于算法方法,从产妇特征的定量产时评估中得出并验证一种适用于低危女性的特定人群的、用于预测出生体重(BW)的多元方法。
在探索部分(n=200)中,前瞻性地研究了 10 个变量,以创建最佳拟合算法(70%的估计值在实际 BW 的±10%范围内),用于预测足月时的 BW;头位衔接。然后,该算法通过无关病例的样本进行了交叉验证(n=280),以比较与常规腹部触诊方法的准确性。
最佳拟合算法是经产妇特异性的。得出的简化算法为:(1)初产妇 BW(g)=100[(0.42×耻骨联合上子宫底高度(SFH;cm))+分娩时的孕周(GA;周)-25];(2)经产妇 BW(g)=100[(0.42×SFH(cm))+GA-23]。交叉验证显示,实际 BW 的±10%范围内的总体准确性为 69.3%,超过了常规腹部触诊(60.4%)(P=0.019)。在以下特征的女性中,算法 BW 预测明显比常规腹部触诊更准确:BW 2500-4000 g、经产妇、孕前体重<50 kg、当前体重<60 kg、身高<155 cm、BMI<18.5 kg/m2、宫颈扩张 3-5 cm、胎先露<0、胎膜完整、SFH 30-39 cm、mAC<90 cm、MUAC<25 cm 以及新生儿为女性(P<0.05)。
我们的简化算法对足月 BW 的预测总体准确性超过了常规腹部触诊。