Sanborn B B, Andersen T T, Reichert L E
Department of Biochemistry, Albany Medical College, New York 12208.
Biochemistry. 1987 Dec 15;26(25):8196-200. doi: 10.1021/bi00399a026.
Thermodynamic parameters of follitropin binding to solubilized testicular receptors were measured in order to assess the forces involved in the binding reaction. Reversibility of follitropin binding to solubilized receptor decreased only 20% over the temperature range 4-24 degrees C, whereas earlier studies indicated reversibility of binding to membrane-bound receptor decreased by more than 40% over the same range [Anderson, T. T., Curatolo, L. M., & Reichert, L. E., Jr. (1983) Mol. Cell. Endocrinol. 33, 37-52]. Thermodynamic analysis of follitropin binding to solubilized receptors showed that the hydrophobic effect was important in the binding reaction. The mean values, at 25 degrees C, for delta H and delta S were -31.8 kcal/mol and -66.0 cal mol-1 K-1, respectively, and delta Cp was -3.0 kcal mol-1 K-1. This is an unusually large heat capacity for protein-protein association reactions, indicating an enhanced role for the hydrophobic effect with the solubilized (compared to membrane-bound) receptor. Since glycerol was necessary to stabilize the solubilized receptor, we determined whether glycerol affected the thermodynamic parameters measured for the binding reaction. Control experiments, performed with membrane-bound receptor in the presence or absence of glycerol, indicated that delta Cp actually decreased upon addition of glycerol (-0.8 kcal mol-1 K-1 in the presence of glycerol compared to -2.3 kcal mol-1 K-1 in the absence of glycerol). Thus, the large negative delta Cp observed for the soluble receptor was a result of its removal from the membrane and was not due to the presence of glycerol.(ABSTRACT TRUNCATED AT 250 WORDS)