Oikonomakos N G, Johnson L N, Acharya K R, Stuart D I, Barford D, Hajdu J, Varvill K M, Melpidou A E, Papageorgiou T, Graves D J
Laboratory of Molecular Biophysics, University of Oxford, U.K.
Biochemistry. 1987 Dec 15;26(25):8381-9. doi: 10.1021/bi00399a053.
The detailed environment of the essential cofactor pyridoxal 5'-phosphate in glycogen phosphorylase b, resulting from crystallographic refinement at 1.9-A resolution, is described. The pyridoxal ring is buried in a nonpolar site containing three aromatic rings while the 5'-phosphate group is highly solvated and makes only three direct contacts to the protein. The pyridine nitrogen interacts via a water with protein atoms [main chain carbonyl oxygen (Asn-133) and OH of tyrosine (Tyr-90)]. The crystal structures of three active derivatives of phosphorylase reconstituted with 5'-deoxypyridoxal 5'-methylenephosphonate (PDMP), 6-fluoropyridoxal 5'-phosphate (6-FPLP), and pyridoxal (PL) in place of the natural cofactor have been determined at 2.5-A resolution. The results for PDMP-phosphorylase show a closer proximity of the phosphonate group to the NZ atom of a lysine (Lys-574) than that observed in the native enzyme, consistent with 31P NMR studies that have shown a change in ionization state of the phosphonate group compared to the native cofactor phosphate. The replacement of the polar 5'-ester linkage by a CH2 group results in a small shift of a water and its hydrogen-bonded tyrosine (Tyr-648). In 6-FPLP-phosphorylase the fluorine is accommodated with no significant change in structure. It is suggested that substitution of the electronegative fluorine at the 6-position may result in lower activity of 6-FPLP-phosphorylase through a strengthening of hydrogen-bonded interactions to the pyridine nitrogen N1.(ABSTRACT TRUNCATED AT 250 WORDS)
本文描述了糖原磷酸化酶b中必需辅因子磷酸吡哆醛5'-磷酸酯的详细环境,该环境是通过1.9埃分辨率的晶体学精修得到的。吡哆醛环埋于一个包含三个芳香环的非极性位点,而5'-磷酸基团则高度溶剂化,仅与蛋白质有三个直接接触。吡啶氮通过一个水与蛋白质原子相互作用[主链羰基氧(Asn-133)和酪氨酸的OH(Tyr-90)]。已测定了用5'-脱氧吡哆醛5'-亚甲基膦酸酯(PDMP)、6-氟磷酸吡哆醛(6-FPLP)和吡哆醛(PL)替代天然辅因子重构的三种磷酸化酶活性衍生物的晶体结构,分辨率为2.5埃。PDMP-磷酸化酶的结果显示,膦酸基团比天然酶中更靠近赖氨酸(Lys-574)的NZ原子,这与31P NMR研究结果一致,该研究表明与天然辅因子磷酸相比,膦酸基团的电离状态发生了变化。用CH2基团取代极性的5'-酯键导致一个水及其氢键连接的酪氨酸(Tyr-648)发生小的位移。在6-FPLP-磷酸化酶中,氟的容纳没有导致结构的显著变化。有人提出,在6位取代电负性的氟可能通过加强与吡啶氮N1的氢键相互作用而导致6-FPLP-磷酸化酶活性降低。(摘要截短于250字)