Suppr超能文献

基于生理学的药代动力学模型预测 CYP2D6 介导的基因-药物-药物相互作用。

Physiologically-Based Pharmacokinetic Modeling for the Prediction of CYP2D6-Mediated Gene-Drug-Drug Interactions.

机构信息

Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland.

Geneva-Lausanne School of Pharmacy, Geneva University, Geneva, Switzerland.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2019 Aug;8(8):567-576. doi: 10.1002/psp4.12411. Epub 2019 Jul 3.

Abstract

The aim of this work was to predict the extent of Cytochrome P450 2D6 (CYP2D6)-mediated drug-drug interactions (DDIs) in different CYP2D6 genotypes using physiologically-based pharmacokinetic (PBPK) modeling. Following the development of a new duloxetine model and optimization of a paroxetine model, the effect of genetic polymorphisms on CYP2D6-mediated intrinsic clearances of dextromethorphan, duloxetine, and paroxetine was estimated from rich pharmacokinetic profiles in activity score (AS)1 and AS2 subjects. We obtained good predictions for the dextromethorphan-duloxetine interaction (Ratio of predicted over observed area under the curve (AUC) ratio (R ) 1.38-1.43). Similarly, the effect of genotype was well predicted, with an increase of area under the curve ratio of 28% in AS2 subjects when compared with AS1 (observed, 33%). Despite an approximately twofold underprediction of the dextromethorphan-paroxetine interaction, an R of 0.71 was obtained for the effect of genotype on the area under the curve ratio. Therefore, PBPK modeling can be successfully used to predict gene-drug-drug interactions (GDDIs). Based on these promising results, a workflow is suggested for the generic evaluation of GDDIs and DDIs that can be applied in other situations.

摘要

本研究旨在通过基于生理的药代动力学(PBPK)模型预测不同 CYP2D6 基因型中细胞色素 P450 2D6(CYP2D6)介导的药物-药物相互作用(DDI)的程度。在开发新的度洛西汀模型和优化帕罗西汀模型之后,从活性评分(AS)1 和 AS2 受试者的丰富药代动力学特征中估算了遗传多态性对去甲右美沙芬、度洛西汀和帕罗西汀 CYP2D6 介导的内在清除率的影响。我们对去甲右美沙芬-度洛西汀相互作用(预测与观察的 AUC 比值的比值(R)1.38-1.43)进行了良好的预测。同样,基因型的影响也得到了很好的预测,与 AS1 相比,AS2 受试者的 AUC 比值增加了 28%(观察值为 33%)。尽管去甲右美沙芬-帕罗西汀相互作用的预测值约低两倍,但基因型对 AUC 比值的影响的 R 为 0.71。因此,PBPK 模型可成功用于预测基因-药物-药物相互作用(GDDI)。基于这些有希望的结果,提出了一种用于一般评估 GDDI 和 DDI 的工作流程,可应用于其他情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2897/6709421/787736b2bd3a/PSP4-8-567-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验