Suppr超能文献

多功能咪唑烷氧基双季铵盐/路易斯酸催化剂作为非优势立体异构体不对称合成的工具。

Polyfunctional Imidazolium Aryloxide Betaine/Lewis Acid Catalysts as Tools for the Asymmetric Synthesis of Disfavored Diastereomers.

机构信息

Institut für Organische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany.

Institut für Anorganische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany.

出版信息

J Am Chem Soc. 2019 Jul 31;141(30):12029-12043. doi: 10.1021/jacs.9b04902. Epub 2019 Jul 22.

Abstract

Enzymes are Nature's polyfunctional catalysts tailor-made for specific biochemical synthetic transformations, which often proceed with almost perfect stereocontrol. From a synthetic point of view, artificial catalysts usually offer the advantage of much broader substrate scopes, but stereocontrol is often inferior to that possible with natural enzymes. A particularly difficult synthetic task in asymmetric catalysis is to overwrite a pronounced preference for the formation of an inherently favored diastereomer; this requires a high level of stereocontrol. In this Article, the development of a novel artificial polyfunctional catalyst type is described, in which an imidazolium-aryloxide betaine moiety cooperates with a Lewis acidic metal center (here Cu(II)) within a chiral catalyst framework. This strategy permits for the first time a general, highly enantioselective access to the otherwise rare diastereomer in the direct 1,4-addition of various 1,3-dicarbonyl substrates to β-substituted nitroolefins. The unique stereocontrol by the polyfunctional catalyst system is also demonstrated with the highly stereoselective formation of a third contiguous stereocenter making use of a diastereoselective nitronate protonation employing α,β-disubstituted nitroolefin substrates. Asymmetric 1,4-additions of β-ketoesters to α,β-disubstituted nitroolefins have never been reported before in literature. Combined mechanistic investigations including detailed spectroscopic and density functional theory (DFT) studies suggest that the aryloxide acts as a base to form a Cu(II)-bound enolate, whereas the nitroolefin is activated by H-bonds to the imidazolium unit and the phenolic OH generated during the proton transfer. Detailed kinetic analyses (RPKA, VTNA) suggest that (a) the catalyst is stable during the catalytic reaction, (b) not inhibited by product and (c) the rate-limiting step is most likely the C-C bond formation in agreement with the DFT calculations of the catalytic cycle. The robust catalyst is readily synthesized and recyclable and could also be applied to a cascade cyclization.

摘要

酶是大自然定制的多功能催化剂,专门用于特定的生化合成转化,这些转化通常具有几乎完美的立体控制。从合成的角度来看,人工催化剂通常具有更广泛的底物范围优势,但立体控制通常不如天然酶。在不对称催化中,一个特别困难的合成任务是覆盖对形成固有优势的非对映异构体的明显偏好;这需要高水平的立体控制。在本文中,描述了一种新型人工多功能催化剂类型的开发,其中咪唑鎓-芳氧基甜菜碱部分与手性催化剂框架内的路易斯酸性金属中心(此处为 Cu(II))协同作用。这种策略首次允许在各种 1,3-二羰基底物与β取代的硝基烯烃的直接 1,4-加成中,通常以高度对映选择性的方式获得否则罕见的非对映异构体。多功能催化剂体系的独特立体控制也通过使用非对映选择性硝酸盐质子化来高度立体选择性地形成第三个连续立体中心得到证明,该质子化使用α,β-取代的硝基烯烃底物。不对称 1,4-加成β-酮酯到α,β-取代的硝基烯烃在文献中以前从未报道过。包括详细光谱和密度泛函理论(DFT)研究在内的综合机理研究表明,芳氧基作为碱形成 Cu(II)结合的烯醇化物,而硝基烯烃通过氢键与咪唑单元和在质子转移过程中生成的酚性 OH 激活。详细的动力学分析(RPKA、VTNA)表明 (a) 催化剂在催化反应过程中稳定,(b) 不受产物抑制,(c) 速率限制步骤最有可能是 C-C 键形成,这与催化循环的 DFT 计算一致。这种坚固的催化剂易于合成和可回收,也可应用于级联环化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验