Adams Hannah K, Kadarauch Max, Hodson Nicholas J, Lit Arthur R, Phipps Robert J
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
Chem Rev. 2025 Mar 12;125(5):2846-2907. doi: 10.1021/acs.chemrev.4c00849. Epub 2025 Feb 28.
The attractive force between two oppositely charged ions can constitute a powerful design tool in selective catalysis. Enzymes make extensive use of ionic interactions alongside a variety of other noncovalent interactions; recent years have seen synthetic chemists begin to seriously explore these interactions in catalyst designs that also incorporate a reactive transition metal. In isolation, a single ionic interaction exhibits low directionality, but in many successful systems they exist alongside additional interactions which can provide a high degree of organization at the selectivity-determining transition state. Even in situations with a single key interaction, low directionality is not always detrimental, and can even be advantageous, conferring generality to a single catalyst. This Review explores design approaches that utilize ionic interactions to control selectivity in transition metal catalysis. It is divided into two halves: in the first, the ionic interaction occurs in the outer sphere of the metal complex, using a ligand which is charged or bound to an anion; in the second, the metal bears a formal charge, and the ionic interaction is with an associated counterion.
两个带相反电荷的离子之间的吸引力可构成选择性催化中一种强大的设计工具。酶在广泛利用离子相互作用的同时,还利用了多种其他非共价相互作用;近年来,合成化学家已开始在同样包含活性过渡金属的催化剂设计中认真探索这些相互作用。孤立来看,单个离子相互作用的方向性较低,但在许多成功的体系中,它们与其他相互作用共存,这些相互作用可在决定选择性的过渡态提供高度的有序性。即使在只有单一关键相互作用的情况下,低方向性也不总是有害的,甚至可能是有利的,能赋予单一催化剂通用性。本综述探讨了利用离子相互作用来控制过渡金属催化选择性的设计方法。它分为两部分:第一部分中,离子相互作用发生在金属配合物的外层,使用带电荷或与阴离子结合的配体;第二部分中,金属带有形式电荷,离子相互作用是与相关的抗衡离子发生的。