Suppr超能文献

水基型聚氨酯作为一种新型且有前途的甲烷水合物形成动力学抑制剂。

Waterborne Polyurethanes as a New and Promising Class of Kinetic Inhibitors for Methane Hydrate Formation.

机构信息

Department of Physical Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008, Kazan, Russian Federation.

UCP, ENSTA ParisTech, Université Paris-Saclay, 828 Boulevard des Maréchaux, 91762, Palaiseau, Cedex, France.

出版信息

Sci Rep. 2019 Jul 5;9(1):9797. doi: 10.1038/s41598-019-46274-w.

Abstract

A facile, new and promising technique based on waterborne polymers for designing and synthesizing kinetic hydrate inhibitors (KHIs) has been proposed to prevent methane hydrate formation. This topic is challenging subject in flow assurance problems in gas and oilfields. Proposed technique helps to get KHIs with required number and distance of hydrophilic and hydrophobic groups in molecule and good solubility in water. The performance of these new KHIs was investigated by high pressure micro-differential scanning calorimeter (HP-μDSC) and high-pressure autoclave cell. The results demonstrated the high performance of these inhibitors in delay the induction time (10-20 times) and reduce the hydrate growth rate (3 times). Also they did not increase hydrate dissociation temperature in comparison with pure water and show thermodynamic inhibition as well. Inhibition effect of synthesized polymers is improved with the increase of concentration significantly. Since this is the first report of the use of waterborne polymers as kinetic hydrate inhibitor, we expect that KHIs based on waterborne-based polymers can be a prospective option for preventing methane hydrate formation.

摘要

提出了一种基于水基聚合物的简便、新颖且有前景的技术,用于设计和合成动力学水合物抑制剂(KHIs),以防止甲烷水合物的形成。这个主题是天然气和油田流动保障问题中的一个具有挑战性的课题。所提出的技术有助于获得在分子中具有所需数量和亲水性和疏水性基团的距离的 KHIs,并且在水中具有良好的溶解性。这些新型 KHIs 的性能通过高压微差扫描量热法(HP-μDSC)和高压高压釜细胞进行了研究。结果表明,这些抑制剂在延迟诱导时间(10-20 倍)和降低水合物生长速率(3 倍)方面表现出优异的性能。与纯水相比,它们也不会增加水合物的分解温度,并且表现出热力学抑制作用。随着浓度的增加,合成聚合物的抑制效果显著提高。由于这是首次报道将水基聚合物用作动力学水合物抑制剂,我们预计基于水基聚合物的 KHIs 可以成为防止甲烷水合物形成的一种有前途的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93ea/6611824/27419aab6b54/41598_2019_46274_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验