Suppr超能文献

决策变量的稳定表示法,以实现灵活的行为。

Stable Representations of Decision Variables for Flexible Behavior.

机构信息

The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Neuron. 2019 Sep 4;103(5):922-933.e7. doi: 10.1016/j.neuron.2019.06.001. Epub 2019 Jul 4.

Abstract

Decisions occur in dynamic environments. In the framework of reinforcement learning, the probability of performing an action is influenced by decision variables. Discrepancies between predicted and obtained rewards (reward prediction errors) update these variables, but they are otherwise stable between decisions. Although reward prediction errors have been mapped to midbrain dopamine neurons, it is unclear how the brain represents decision variables themselves. We trained mice on a dynamic foraging task in which they chose between alternatives that delivered reward with changing probabilities. Neurons in the medial prefrontal cortex, including projections to the dorsomedial striatum, maintained persistent firing rate changes over long timescales. These changes stably represented relative action values (to bias choices) and total action values (to bias response times) with slow decay. In contrast, decision variables were weakly represented in the anterolateral motor cortex, a region necessary for generating choices. Thus, we define a stable neural mechanism to drive flexible behavior.

摘要

决策是在动态环境中做出的。在强化学习的框架下,执行动作的概率受到决策变量的影响。预测奖励和实际奖励之间的差异(奖励预测误差)会更新这些变量,但在决策之间它们是稳定的。尽管奖励预测误差已经映射到中脑多巴胺神经元,但尚不清楚大脑如何表示决策变量本身。我们在一个动态觅食任务中对老鼠进行训练,它们在具有变化概率的选择之间做出选择。内侧前额叶皮层中的神经元,包括对背内侧纹状体的投射,在长时间内保持持久的放电率变化。这些变化稳定地表示相对动作值(偏向选择)和总动作值(偏向反应时间),衰减缓慢。相比之下,决策变量在外侧运动皮层中弱表示,该区域对于产生选择是必需的。因此,我们定义了一种稳定的神经机制来驱动灵活的行为。

相似文献

1
Stable Representations of Decision Variables for Flexible Behavior.
Neuron. 2019 Sep 4;103(5):922-933.e7. doi: 10.1016/j.neuron.2019.06.001. Epub 2019 Jul 4.
3
Choice, uncertainty and value in prefrontal and cingulate cortex.
Nat Neurosci. 2008 Apr;11(4):389-97. doi: 10.1038/nn2066. Epub 2008 Mar 26.
4
A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making.
Neuron. 2021 Jun 16;109(12):2009-2024.e6. doi: 10.1016/j.neuron.2021.04.014. Epub 2021 May 5.
5
Reward-dependent learning in neuronal networks for planning and decision making.
Prog Brain Res. 2000;126:217-29. doi: 10.1016/S0079-6123(00)26016-0.
6
Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments.
Neuron. 2017 Jan 18;93(2):451-463. doi: 10.1016/j.neuron.2016.12.040.
7
Inter-individual differences in decision-making, flexible and goal-directed behaviors: novel insights within the prefronto-striatal networks.
Brain Struct Funct. 2018 Mar;223(2):897-912. doi: 10.1007/s00429-017-1530-z. Epub 2017 Oct 12.
8
Activity of Prefrontal Neurons Predict Future Choices during Gambling.
Neuron. 2019 Jan 2;101(1):152-164.e7. doi: 10.1016/j.neuron.2018.10.050. Epub 2018 Dec 6.
9
Behavioral theories and the neurophysiology of reward.
Annu Rev Psychol. 2006;57:87-115. doi: 10.1146/annurev.psych.56.091103.070229.
10
Dorsomedial striatal contributions to different forms of risk/reward decision making.
Neurobiol Learn Mem. 2021 Feb;178:107369. doi: 10.1016/j.nlm.2020.107369. Epub 2020 Dec 28.

引用本文的文献

2
Autophagy Modulation by Antidepressants: Mechanisms and Implications.
Neurochem Res. 2025 Sep 4;50(5):285. doi: 10.1007/s11064-025-04534-4.
3
Stimulus uncertainty and relative reward rates determine adaptive responding in perceptual decision-making.
PLoS Comput Biol. 2025 May 27;21(5):e1012636. doi: 10.1371/journal.pcbi.1012636. eCollection 2025 May.
7
Striatal arbitration between choice strategies guides few-shot adaptation.
Nat Commun. 2025 Feb 20;16(1):1811. doi: 10.1038/s41467-025-57049-5.
9
The role of blended learning in improving medical students' academic performance: evidence from Pakistan.
Front Med (Lausanne). 2024 Dec 17;11:1425659. doi: 10.3389/fmed.2024.1425659. eCollection 2024.
10
Touchscreen response precision is sensitive to the explore/exploit tradeoff.
bioRxiv. 2024 Oct 23:2024.10.23.619903. doi: 10.1101/2024.10.23.619903.

本文引用的文献

1
Spontaneous behaviors drive multidimensional, brainwide activity.
Science. 2019 Apr 19;364(6437):255. doi: 10.1126/science.aav7893. Epub 2019 Apr 18.
3
Control of movement vigor and decision making during foraging.
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10476-E10485. doi: 10.1073/pnas.1812979115. Epub 2018 Oct 15.
4
Striatal action-value neurons reconsidered.
Elife. 2018 May 31;7:e34248. doi: 10.7554/eLife.34248.
5
Prefrontal cortex as a meta-reinforcement learning system.
Nat Neurosci. 2018 Jun;21(6):860-868. doi: 10.1038/s41593-018-0147-8. Epub 2018 May 14.
6
Cell-Type-Specific Contributions of Medial Prefrontal Neurons to Flexible Behaviors.
J Neurosci. 2018 May 9;38(19):4490-4504. doi: 10.1523/JNEUROSCI.3537-17.2018. Epub 2018 Apr 12.
7
Activation of serotonin neurons promotes active persistence in a probabilistic foraging task.
Nat Commun. 2018 Mar 8;9(1):1000. doi: 10.1038/s41467-018-03438-y.
8
Dynamic Flexibility in Striatal-Cortical Circuits Supports Reinforcement Learning.
J Neurosci. 2018 Mar 7;38(10):2442-2453. doi: 10.1523/JNEUROSCI.2084-17.2018. Epub 2018 Feb 5.
9
Exploration Disrupts Choice-Predictive Signals and Alters Dynamics in Prefrontal Cortex.
Neuron. 2018 Jan 17;97(2):450-461.e9. doi: 10.1016/j.neuron.2017.12.007. Epub 2017 Dec 28.
10
Distinct Functions of the Primate Putamen Direct and Indirect Pathways in Adaptive Outcome-Based Action Selection.
Front Neuroanat. 2017 Aug 3;11:66. doi: 10.3389/fnana.2017.00066. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验