Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.
International Research Institute for Climate and Society, Palisades, NY, USA.
Sci Adv. 2019 Jul 3;5(7):eaaw1976. doi: 10.1126/sciadv.aaw1976. eCollection 2019 Jul.
Large-scale modes of climate variability can force widespread crop yield anomalies and are therefore often presented as a risk to food security. We quantify how modes of climate variability contribute to crop production variance. We find that the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), tropical Atlantic variability (TAV), and the North Atlantic Oscillation (NAO) together account for 18, 7, and 6% of globally aggregated maize, soybean, and wheat production variability, respectively. The lower fractions of global-scale soybean and wheat production variability result from substantial but offsetting climate-forced production anomalies. All climate modes are important in at least one region studied. In 1983, ENSO, the only mode capable of forcing globally synchronous crop failures, was responsible for the largest synchronous crop failure in the modern historical record. Our results provide the basis for monitoring, and potentially predicting, simultaneous crop failures.
大规模的气候变率模式会迫使作物产量出现大范围异常,因此常常被视为粮食安全的一个风险因素。我们量化了气候变率模式对作物产量变化的贡献。我们发现,厄尔尼诺-南方涛动(ENSO)、印度洋偶极子(IOD)、热带大西洋变化(TAV)和北大西洋涛动(NAO)分别解释了全球玉米、大豆和小麦总产量变化的 18%、7%和 6%。大豆和小麦全球总产量变化的较低部分是由气候强迫产生的产量异常所导致的,但相互抵消了。所有气候模式在至少一个研究地区都很重要。在 1983 年,ENSO 是唯一一种能够导致全球同步作物歉收的模式,导致了现代历史记录中最大规模的同步作物歉收。我们的研究结果为监测和潜在预测同步作物歉收提供了基础。