Singhal Dhruv, Paterson Jessy, Ben-Khedim Meriam, Tainoff Dimitri, Cagnon Laurent, Richard Jacques, Chavez-Angel Emigdio, Fernandez Juliana Jaramillo, Sotomayor-Torres Clivia M, Lacroix David, Bourgault Daniel, Buttard Denis, Bourgeois Olivier
Univ. Grenoble Alpes, CEA, INAC-Pheliqs, F-38000 Grenoble, France and Institut Néel, CNRS, 25 avenue des Martyrs, F-38042 Grenoble, France.
Institut Néel, CNRS, 25 avenue des Martyrs, F-38042 Grenoble, France.
Nanoscale. 2019 Jul 18;11(28):13423-13430. doi: 10.1039/c9nr01566c.
Pnictogen and chalcogenide compounds have been seen as high-potential materials for efficient thermoelectric conversion over the past few decades. It is also known that with nanostructuration, the physical properties of these pnictogen-chalcogenide compounds can be further enhanced towards a more efficient heat conversion. Here, we report the reduced thermal conductivity of a large ensemble of Bi2Te3 alloy nanowires (70 nm in diameter) with selenium for n-type and antimony for p-type (Bi2Te3-ySey and Bi2-xSbxTe3 respectively). The nanowire growth was carried out through electrodeposition in nanoporous aluminium oxide templates with high aspect ratios leading to a forest (109 per centimetre square) of nearly identical nanowires. The temperature dependence of thermal conductivity for the nanowire ensembles was acquired through a highly sensitive 3ω measurement technique. The change in the thermal conductivity of nanowires is largely affected by the roughness in addition to the size effect due to enhanced boundary scattering. The major factor that influences the thermal conductivity was found to be the ratio of the rms roughness to the correlation length of the nanowire. With a high Seebeck coefficient and electrical conductivity at room temperature, the overall thermoelectric figure of merit ZT allows the consideration of such forests of nanowires as efficient potential building blocks of future TE devices.
在过去几十年里,氮族元素和硫族化合物被视为高效热电转换的高潜力材料。众所周知,通过纳米结构化,这些氮族-硫族化合物的物理性质可以进一步提升,以实现更高效的热转换。在此,我们报告了大量直径为70纳米的Bi2Te3合金纳米线(n型用硒掺杂,p型用锑掺杂,分别为Bi2Te3-ySey和Bi2-xSbxTe3)的热导率降低情况。纳米线的生长是通过在具有高纵横比的纳米多孔氧化铝模板中进行电沉积来实现的,从而形成了一片由几乎相同的纳米线组成的“森林”(每平方厘米109根)。纳米线集合体热导率的温度依赖性是通过一种高灵敏度的3ω测量技术获得的。除了由于增强的边界散射导致的尺寸效应外,纳米线热导率的变化还在很大程度上受到粗糙度的影响。发现影响热导率的主要因素是纳米线的均方根粗糙度与相关长度的比值。由于在室温下具有高塞贝克系数和电导率,整体热电优值ZT使得可以将这种纳米线“森林”视为未来热电装置的高效潜在构建模块。