Vandekar Simon N, Satterthwaite Theodore D, Xia Cedric H, Adebimpe Azeez, Ruparel Kosha, Gur Ruben C, Gur Raquel E, Shinohara Russell T
Department of Biostatistics, Vanderbilt University, Nashville, Tennessee.
Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
Biometrics. 2019 Dec;75(4):1145-1155. doi: 10.1111/biom.13114. Epub 2019 Aug 28.
Spatial extent inference (SEI) is widely used across neuroimaging modalities to adjust for multiple comparisons when studying brain-phenotype associations that inform our understanding of disease. Recent studies have shown that Gaussian random field (GRF)-based tools can have inflated family-wise error rates (FWERs). This has led to substantial controversy as to which processing choices are necessary to control the FWER using GRF-based SEI. The failure of GRF-based methods is due to unrealistic assumptions about the spatial covariance function of the imaging data. A permutation procedure is the most robust SEI tool because it estimates the spatial covariance function from the imaging data. However, the permutation procedure can fail because its assumption of exchangeability is violated in many imaging modalities. Here, we propose the (semi-) parametric bootstrap joint (PBJ; sPBJ) testing procedures that are designed for SEI of multilevel imaging data. The sPBJ procedure uses a robust estimate of the spatial covariance function, which yields consistent estimates of standard errors, even if the covariance model is misspecified. We use the methods to study the association between performance and executive functioning in a working memory functional magnetic resonance imaging study. The sPBJ has similar or greater power to the PBJ and permutation procedures while maintaining the nominal type 1 error rate in reasonable sample sizes. We provide an R package to perform inference using the PBJ and sPBJ procedures.
空间范围推断(SEI)在各种神经成像模态中被广泛使用,用于在研究脑表型关联以增进我们对疾病的理解时调整多重比较。最近的研究表明,基于高斯随机场(GRF)的工具可能会使家族性错误率(FWER)膨胀。这就引发了关于使用基于GRF的SEI控制FWER需要哪些处理选择的大量争议。基于GRF的方法的失败是由于对成像数据的空间协方差函数的不切实际假设。置换程序是最稳健的SEI工具,因为它从成像数据中估计空间协方差函数。然而,置换程序可能会失败,因为在许多成像模态中其可交换性假设被违反。在这里,我们提出了(半)参数自助联合(PBJ;sPBJ)测试程序,该程序专为多级成像数据的SEI而设计。sPBJ程序使用空间协方差函数的稳健估计,即使协方差模型指定错误,也能产生一致的标准误差估计。我们在一项工作记忆功能磁共振成像研究中使用这些方法来研究表现与执行功能之间的关联。在合理的样本量下,sPBJ与PBJ和置换程序具有相似或更大的功效,同时保持名义上的I型错误率。我们提供了一个R包,用于使用PBJ和sPBJ程序进行推断。