Suppr超能文献

基于重采样的神经影像拓扑特征推断评估。

Evaluation of resampling-based inference for topological features of neuroimages.

作者信息

Vandekar Simon N, Kang Kaidi, Woodward Neil D, Huang Anna, McHugo Maureen, Garbett Shawn, Stephens Jeremy, Shinohara Russell T, Schwartzman Armin, Blume Jeffrey

出版信息

bioRxiv. 2023 Dec 13:2023.12.12.571377. doi: 10.1101/2023.12.12.571377.

Abstract

Many recent studies have demonstrated the inflated type 1 error rate of the original Gaussian random field (GRF) methods for inference of neuroimages and identified resampling (permutation and bootstrapping) methods that have better performance. There has been no evaluation of resampling procedures when using robust (sandwich) statistical images with different topological features (TF) used for neuroimaging inference. Here, we consider estimation of distributions TFs of a statistical image and evaluate resampling procedures that can be used when exchangeability is violated. We compare the methods using realistic simulations and study sex differences in life-span age-related changes in gray matter volume in the Nathan Kline Institute Rockland sample. We find that our proposed wild bootstrap and the commonly used permutation procedure perform well in sample sizes above 50 under realistic simulations with heteroskedasticity. The Rademacher wild bootstrap has fewer assumptions than the permutation and performs similarly in samples of 100 or more, so is valid in a broader range of conditions. We also evaluate the GRF-based pTFCE method and show that it has inflated error rates in samples less than 200. Our R package, pbj , is available on Github and allows the user to reproducibly implement various resampling-based group level neuroimage analyses.

摘要

最近的许多研究表明,用于神经影像推断的原始高斯随机场(GRF)方法的I型错误率被夸大了,并确定了具有更好性能的重采样(置换和自举)方法。在使用具有不同拓扑特征(TF)的稳健(三明治)统计图像进行神经影像推断时,尚未对重采样程序进行评估。在这里,我们考虑统计图像分布TF的估计,并评估在可交换性被违反时可以使用的重采样程序。我们使用逼真的模拟比较这些方法,并研究内森·克莱因研究所罗克兰样本中灰质体积与寿命相关变化的性别差异。我们发现,在具有异方差的逼真模拟中,我们提出的野生自举和常用的置换程序在样本量超过50时表现良好。拉德马赫野生自举比置换的假设更少,在100个或更多样本中表现相似,因此在更广泛的条件下有效。我们还评估了基于GRF的pTFCE方法,并表明它在样本量小于200时错误率被夸大。我们的R包pbj可在Github上获取,允许用户可重复地实现各种基于重采样的组水平神经影像分析。

相似文献

1
Evaluation of resampling-based inference for topological features of neuroimages.
bioRxiv. 2023 Dec 13:2023.12.12.571377. doi: 10.1101/2023.12.12.571377.
2
Robust spatial extent inference with a semiparametric bootstrap joint inference procedure.
Biometrics. 2019 Dec;75(4):1145-1155. doi: 10.1111/biom.13114. Epub 2019 Aug 28.
3
Resampling dependent concordance correlation coefficients.
J Biopharm Stat. 2007;17(4):685-96. doi: 10.1080/10543400701329471.
4
Faster family-wise error control for neuroimaging with a parametric bootstrap.
Biostatistics. 2018 Oct 1;19(4):497-513. doi: 10.1093/biostatistics/kxx051.
5
Resampling-Based Inference Methods for Comparing Two Coefficients Alpha.
Psychometrika. 2018 Mar;83(1):203-222. doi: 10.1007/s11336-017-9601-x. Epub 2018 Jan 2.
6
Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power.
Neuroimage. 2019 Jan 15;185:12-26. doi: 10.1016/j.neuroimage.2018.09.078. Epub 2018 Oct 6.
8
Permutation and parametric tests for effect sizes in voxel-based morphometry of gray matter volume in brain structural MRI.
Magn Reson Imaging. 2015 Dec;33(10):1299-1305. doi: 10.1016/j.mri.2015.07.014. Epub 2015 Aug 5.
9
Resampling-based methods for biologists.
PeerJ. 2020 May 7;8:e9089. doi: 10.7717/peerj.9089. eCollection 2020.
10
Bootstrap inference when using multiple imputation.
Stat Med. 2018 Jun 30;37(14):2252-2266. doi: 10.1002/sim.7654. Epub 2018 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验