Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.
711th Human Performance Wing , Wright-Patterson Air Force Base Air Force Research Laboratories , Dayton , Ohio 45433 , United States.
Anal Chem. 2019 Aug 6;91(15):9554-9562. doi: 10.1021/acs.analchem.9b00773. Epub 2019 Jul 8.
Because of the sharp distance dependence of surface-enhanced Raman spectroscopy (SERS), analyte molecules that do not exhibit strong affinity for Au/Ag often elude detection. New methods of integrating such analytes with SERS substrates are required to circumvent this limitation and expand the sensitivity of SERS to new molecules and applications. We communicate here a solution-phase, capture agent-free method of aggregating Au nanospheres in the presence of five neurotransmitters (dopamine, epinephrine, norepinephrine, serotonin, and histamine) and preventing sedimentation by encapsulating the aggregated nanospheres with polyvinylpyrrolidone, thereby trapping the neurotransmitters in close proximity to the Au nanospheres and enabling SER detection. The primary advantages of this physicochemical trapping method, which is generalizable to analytes beyond the scope of this work, are the high signal-to-noise ratio and spectral consistency down to nM levels. Normal Raman spectra and density functional theory calculations corroborate the accuracy of the spectra. Spectra collected over a wide range of concentrations were used to construct adsorption isotherms for all five neurotransmitters, from which adsorption dissociation constants were calculated, spanning from 5.7 × 10 M to 1.7 × 10 M. We expect this method to produce high quality SER spectra of any molecule with an Au affinity known or expected (based on functional groups) to be within that range. Our results have implications for plasmonic detection of these neurotransmitters, particularly for mixtures of those that exhibited disparate Au affinity in our study. We also present evidence that this method produces spectra of sufficient resolution to explore hypotheses related to surface adsorption behavior.
由于表面增强拉曼光谱(SERS)的尖锐距离依赖性,对于那些与 Au/Ag 没有强烈亲和力的分析物分子,通常无法进行检测。需要新的方法将这些分析物与 SERS 基底集成,以规避这一限制并提高 SERS 对新分子和应用的灵敏度。我们在这里交流了一种在五种神经递质(多巴胺、肾上腺素、去甲肾上腺素、血清素和组氨酸)存在下聚集 Au 纳米球的溶液相、无捕获剂方法,并通过用聚乙烯吡咯烷酮封装聚集的纳米球来防止沉淀,从而将神经递质捕获在靠近 Au 纳米球的位置,并实现 SER 检测。这种物理化学捕获方法的主要优点是信噪比高,光谱一致性可达 nM 级。正常拉曼光谱和密度泛函理论计算证实了光谱的准确性。在很宽的浓度范围内收集的光谱用于构建所有五种神经递质的吸附等温线,从中计算出吸附离解常数,范围从 5.7×10^-6 M 到 1.7×10^-5 M。我们预计这种方法将产生任何具有已知 Au 亲和力的分子的高质量 SER 光谱(基于官能团,预期在该范围内)。我们的结果对这些神经递质的等离子体检测具有重要意义,特别是对于我们研究中表现出不同 Au 亲和力的混合物。我们还提供了证据表明,该方法产生的光谱具有足够的分辨率,可以探索与表面吸附行为相关的假设。