Yamamoto Kei, Thiang Guo Chuan, Pirro Philipp, Kim Kyoung-Whan, Everschor-Sitte Karin, Saitoh Eiji
Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195, Japan.
Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany.
Phys Rev Lett. 2019 May 31;122(21):217201. doi: 10.1103/PhysRevLett.122.217201.
We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a class of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding numbers around these vortex lines and identify them to be the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence appropriately reformulated for these classical waves, we predict that surface modes appear but not in a gap of the bulk frequency spectrum. This feature, consistent with the magnetostatic surface spin waves, indicates a broader realm of topological phases of matter beyond spectrally gapped ones.
我们提出了一种描述经典波的哈密顿量的拓扑特征。将其应用于自旋电子学应用中重要的静磁表面自旋波,我们解决了关于其拓扑起源的猜测。对于一类包括由偶极 - 偶极相互作用驱动的自旋波的经典系统,我们表明拓扑由布里渊区中的涡旋线表征,使得哈密顿力学的辛结构起着至关重要的作用。我们定义围绕这些涡旋线的缠绕数,并将它们识别为一类半金属的体拓扑不变量。利用为这些经典波适当重新表述的体边对应关系,我们预测表面模式会出现,但不是出现在体频谱的能隙中。这一特征与静磁表面自旋波一致,表明物质的拓扑相领域比具有能隙的相更广泛。