Suppr超能文献

量子海森堡磁体中的 Kardar-Parisi-Zhang 物理学

Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet.

作者信息

Ljubotina Marko, Žnidarič Marko, Prosen Tomaž

机构信息

Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.

出版信息

Phys Rev Lett. 2019 May 31;122(21):210602. doi: 10.1103/PhysRevLett.122.210602.

Abstract

Equilibrium spatiotemporal correlation functions are central to understanding weak nonequilibrium physics. In certain local one-dimensional classical systems with three conservation laws they show universal features. Namely, fluctuations around ballistically propagating sound modes can be described by the celebrated Kardar-Parisi-Zhang (KPZ) universality class. Can such a universality class be found also in quantum systems? By unambiguously demonstrating that the KPZ scaling function describes magnetization dynamics in the SU(2) symmetric Heisenberg spin chain we show, for the first time, that this is so. We achieve that by introducing new theoretical and numerical tools, and make a puzzling observation that the conservation of energy does not seem to matter for the KPZ physics.

摘要

平衡时空关联函数是理解弱非平衡物理的核心。在某些具有三个守恒定律的局部一维经典系统中,它们呈现出普遍特征。具体而言,围绕弹道传播声模的涨落可以用著名的 Kardar-Parisi-Zhang(KPZ)普适类来描述。那么在量子系统中是否也能找到这样的普适类呢?通过明确证明 KPZ 标度函数描述了 SU(2) 对称海森堡自旋链中的磁化动力学,我们首次表明情况确实如此。我们通过引入新的理论和数值工具实现了这一点,并做出了一个令人困惑的观察结果,即能量守恒对于 KPZ 物理似乎并不重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验