Suppr超能文献

一维极化激元凝聚体中的 Kardar-Parisi-Zhang 普遍性。

Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate.

机构信息

Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), Palaiseau, France.

Université Grenoble Alpes and CNRS, Laboratoire de Physique et Modélisation des Milieux Condensés (LPMMC), Grenoble, France.

出版信息

Nature. 2022 Aug;608(7924):687-691. doi: 10.1038/s41586-022-05001-8. Epub 2022 Aug 24.

Abstract

Revealing universal behaviours is a hallmark of statistical physics. Phenomena such as the stochastic growth of crystalline surfaces and of interfaces in bacterial colonies, and spin transport in quantum magnets all belong to the same universality class, despite the great plurality of physical mechanisms they involve at the microscopic level. More specifically, in all these systems, space-time correlations show power-law scalings characterized by universal critical exponents. This universality stems from a common underlying effective dynamics governed by the nonlinear stochastic Kardar-Parisi-Zhang (KPZ) equation. Recent theoretical works have suggested that this dynamics also emerges in the phase of out-of-equilibrium systems showing macroscopic spontaneous coherence. Here we experimentally demonstrate that the evolution of the phase in a driven-dissipative one-dimensional polariton condensate falls in the KPZ universality class. Our demonstration relies on a direct measurement of KPZ space-time scaling laws, combined with a theoretical analysis that reveals other key signatures of this universality class. Our results highlight fundamental physical differences between out-of-equilibrium condensates and their equilibrium counterparts, and open a paradigm for exploring universal behaviours in driven open quantum systems.

摘要

揭示普遍行为是统计物理学的一个标志。尽管在微观层面上涉及到大量不同的物理机制,但诸如晶体表面和细菌菌落界面的随机增长,以及量子磁体中的自旋输运等现象都属于同一类普遍性。更具体地说,在所有这些系统中,时空相关性都表现出具有普适临界指数的幂律标度。这种普遍性源于受非线性随机 Kardar-Parisi-Zhang (KPZ) 方程控制的共同基本有效动力学。最近的理论工作表明,这种动力学也出现在表现出宏观自发相干性的非平衡系统的相中。在这里,我们通过实验证明,在一维驱动耗散极化激元凝聚相中,相的演化属于 KPZ 普适类。我们的演示依赖于对 KPZ 时空标度律的直接测量,结合理论分析揭示了该普适类的其他关键特征。我们的结果突出了非平衡凝聚相与平衡凝聚相之间的基本物理差异,并为探索驱动开放量子系统中的普遍行为开辟了一个范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验