Suppr超能文献

关于比特币市场(非)效率的一些评论。

Some comments on Bitcoin market (in)efficiency.

机构信息

Department of Economics and Business, Universidad de Almería, Almería, Spain.

University Centre of Defence at the Spanish Air Force Academy, MDE-UPCT, Santiago de la Ribera, Región de Murcia, Spain.

出版信息

PLoS One. 2019 Jul 8;14(7):e0219243. doi: 10.1371/journal.pone.0219243. eCollection 2019.

Abstract

In this paper, we explore the (in)efficiency of the continuum Bitcoin-USD market in the period ranging from mid 2010 to early 2019. To deal with, we dynamically analyse the evolution of the self-similarity exponent of Bitcoin-USD daily returns via accurate FD4 approach by a 512 day sliding window with overlapping data. Further, we define the memory indicator by the difference between the self-similarity exponent of Bitcoin-USD series and the self-similarity index of its shuffled series. We also carry out additional analyses via FD4 approach by sliding windows of sizes equal to 64, 128, 256, and 1024 days, and also via FD algorithm for values of q equal to 1 and 2 (and sliding windows equal to 512 days). Moreover, we explored the evolution of the self-similarity exponent of actual S&P500 series via FD4 algorithm by sliding windows of sizes equal to 256 and 512 days. In all the cases, the obtained results were found to be similar to our first analysis. We conclude that the self-similarity exponent of the BTC-USD (resp., S&P500) series stands above 0.5. However, this is not due to the presence of significant memory in the series but to its underlying distribution. In fact, it holds that the self-similarity exponent of BTC-USD (resp., S&P500) series is similar or lower than the self-similarity index of a random series with the same distribution. As such, several periods with significant antipersistent memory in BTC-USD (resp., S&P500) series are distinguished.

摘要

在本文中,我们探讨了 2010 年年中至 2019 年初期间比特币-美元连续市场的效率。为了处理这个问题,我们通过使用 512 天的滑动窗口和重叠数据,通过精确的 FD4 方法动态分析比特币-美元日收益率的自相似指数的演变。此外,我们通过大小等于 64、128、256 和 1024 天的滑动窗口,以及通过 q 值等于 1 和 2(以及滑动窗口等于 512 天)的 FD 算法,来定义记忆指标,该指标是通过比特币-美元序列的自相似指数和其随机序列的自相似指数之间的差异来定义的。此外,我们还通过 FD4 算法对实际 S&P500 系列的自相似指数进行了分析,滑动窗口大小分别为 256 和 512 天。在所有情况下,得到的结果都与我们的第一个分析相似。我们得出结论,BTC-USD(或 S&P500)系列的自相似指数大于 0.5。然而,这并不是由于序列中存在显著的记忆,而是由于其基础分布。事实上,BTC-USD(或 S&P500)系列的自相似指数与具有相同分布的随机序列的自相似指数相似或更低。因此,BTC-USD(或 S&P500)系列中存在几个具有显著反持续记忆的时期。

相似文献

1
Some comments on Bitcoin market (in)efficiency.关于比特币市场(非)效率的一些评论。
PLoS One. 2019 Jul 8;14(7):e0219243. doi: 10.1371/journal.pone.0219243. eCollection 2019.
6
The effect of the underlying distribution in Hurst exponent estimation.潜在分布在赫斯特指数估计中的影响。
PLoS One. 2015 May 28;10(5):e0127824. doi: 10.1371/journal.pone.0127824. eCollection 2015.
7
Mutual coupling between stock market and cryptocurrencies.股票市场与加密货币之间的相互耦合。
Heliyon. 2023 May 10;9(5):e16179. doi: 10.1016/j.heliyon.2023.e16179. eCollection 2023 May.
9
Statistical analysis of bitcoin during explosive behavior periods.比特币在爆发性行为期间的统计分析。
PLoS One. 2019 Mar 22;14(3):e0213919. doi: 10.1371/journal.pone.0213919. eCollection 2019.

引用本文的文献

3
An analysis of investors' behavior in Bitcoin market.比特币市场中投资者行为分析。
PLoS One. 2022 Mar 10;17(3):e0264522. doi: 10.1371/journal.pone.0264522. eCollection 2022.
7
Collective dynamics of stock market efficiency.股票市场效率的集体动力学。
Sci Rep. 2020 Dec 15;10(1):21992. doi: 10.1038/s41598-020-78707-2.

本文引用的文献

1
The effect of the underlying distribution in Hurst exponent estimation.潜在分布在赫斯特指数估计中的影响。
PLoS One. 2015 May 28;10(5):e0127824. doi: 10.1371/journal.pone.0127824. eCollection 2015.
3
Analysis of clusters formed by the moving average of a long-range correlated time series.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026105. doi: 10.1103/PhysRevE.69.026105. Epub 2004 Feb 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验