J Neural Eng. 2019 Oct 10;16(6):065001. doi: 10.1088/1741-2552/ab2ffa.
Close-loop control of brain and behavior will benefit from real-time detection of behavioral events to enable low-latency communication with peripheral devices. In animal experiments, this is typically achieved by using sparsely distributed (embedded) sensors that detect animal presence in select regions of interest. High-speed cameras provide high-density sampling across large arenas, capturing the richness of animal behavior, however, the image processing bottleneck prohibits real-time feedback in the context of rapidly evolving behaviors.
Here we developed an open-source software, named PolyTouch, to track animal behavior in large arenas and provide rapid close-loop feedback in ~5.7 ms, ie. average latency from the detection of an event to analog stimulus delivery, e.g. auditory tone, TTL pulse, when tracking a single body. This stand-alone software is written in JAVA. The included wrapper for MATLAB provides experimental flexibility for data acquisition, analysis and visualization.
As a proof-of-principle application we deployed the PolyTouch for place awareness training. A user-defined portion of the arena was used as a virtual target; visit (or approach) to the target triggered auditory feedback. We show that mice develop awareness to virtual spaces, tend to stay shorter and move faster when they reside in the virtual target zone if their visits are coupled to relatively high stimulus intensity (⩾49 dB). Thus, close-loop presentation of perceived aversive feedback is sufficient to condition mice to avoid virtual targets within the span of a single session (~20 min).
Neuromodulation techniques now allow control of neural activity in a cell-type specific manner in spiking resolution. Using animal behavior to drive closed-loop control of neural activity would help to address the neural basis of behavioral state and environmental context-dependent information processing in the brain.
通过实时检测行为事件,实现大脑与行为的闭环控制,从而与外围设备进行低延迟通信,这将使闭环控制受益。在动物实验中,这通常通过使用稀疏分布(嵌入式)传感器来实现,这些传感器可检测动物在特定感兴趣区域的存在。高速摄像机在大范围内提供高密度采样,捕捉动物行为的丰富性,然而,图像处理瓶颈禁止在快速演变的行为环境中进行实时反馈。
在这里,我们开发了一个名为 PolyTouch 的开源软件,用于在大范围内跟踪动物行为,并提供快速的闭环反馈,大约在 5.7ms 内,即从检测到事件到模拟刺激传递的平均延迟,例如,当跟踪单个身体时,跟踪到听觉音调、TTL 脉冲。这个独立的软件是用 JAVA 编写的。包含的 MATLAB 包装器为数据采集、分析和可视化提供了实验灵活性。
作为原理验证应用,我们将 PolyTouch 部署用于位置感知训练。竞技场的用户定义部分被用作虚拟目标;当接近目标时,听觉反馈会触发。我们表明,老鼠会意识到虚拟空间,如果它们的访问与相对较高的刺激强度(≥49dB)相关联,则倾向于在虚拟目标区域停留更短时间,移动更快。因此,闭环呈现感知到的厌恶反馈足以使老鼠在单个会话(约 20 分钟)内避免虚拟目标。
神经调节技术现在允许以尖峰分辨率的方式对特定细胞类型的神经活动进行控制。使用动物行为来驱动神经活动的闭环控制将有助于解决大脑中行为状态和环境上下文相关信息处理的神经基础问题。