Suppr超能文献

TGF-β1-p53 协同作用调控肾脏的促纤维化基因表达谱:分子机制与临床意义。

TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.

机构信息

Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA.

The Urological Institute of Northeastern New York, Albany, New York, USA.

出版信息

FASEB J. 2019 Oct;33(10):10596-10606. doi: 10.1096/fj.201900943R. Epub 2019 Jul 6.

Abstract

Chronic kidney disease affects >15% of the U.S. population and >850 million individuals worldwide. Fibrosis is the common outcome of many chronic renal disorders and, although the etiology varies (, diabetes, hypertension, ischemia, acute injury, and urologic obstructive disorders), persistently elevated renal TGF-β1 levels result in the relentless progression of fibrotic disease. TGF-β1 orchestrates the multifaceted program of renal fibrogenesis involving proximal tubular dysfunction, failed epithelial recovery and redifferentiation, and subsequent tubulointerstitial fibrosis, eventually leading to chronic renal disease. Recent findings implicate p53 as a cofactor in the TGF-β1-induced signaling pathway and a transcriptional coregulator of several TGF-β1 profibrotic response genes by complexing with receptor-activated SMADs, which are homologous to the small worms (SMA) and mothers against decapentaplegic (MAD) gene families. The cooperative p53-TGF-β1 genomic cluster includes genes involved in cell growth control and extracellular matrix remodeling [, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor, clade E, member 1), connective tissue growth factor, and collagen I]. Although the molecular basis for this codependency is unclear, many TGF-β1-responsive genes possess p53 binding motifs. p53 up-regulation and increased p53 phosphorylation; moreover, they are evident in nephrotoxin- and ischemia/reperfusion-induced injury, diabetic nephropathy, ureteral obstructive disease, and kidney allograft rejection. Pharmacologic and genetic approaches that target p53 attenuate expression of the involved genes and mitigate the fibrotic response, confirming a key role for p53 in renal disorders. This review focuses on mechanisms whereby p53 functions as a transcriptional regulator within the TGF-β1 cluster with an emphasis on the potent fibrosis-promoting PAI-1 gene.-Higgins, C. E., Tang, J., Mian, B. M., Higgins, S. P., Gifford, C. C., Conti, D. J., Meldrum, K. K., Samarakoon, R., Higgins, P. J. TGF-β1-p53 cooperativity regulates a profibrotic genomic program in the kidney: molecular mechanisms and clinical implications.

摘要

慢性肾脏病影响美国超过 15%的人口和全球超过 8.5 亿人。纤维化是许多慢性肾脏疾病的共同结局,尽管病因不同(如糖尿病、高血压、缺血、急性损伤和泌尿系统梗阻性疾病),但持续升高的肾脏 TGF-β1 水平导致纤维性病无休止地进展。TGF-β1 协调涉及近端肾小管功能障碍、上皮恢复和再分化失败以及随后的肾小管间质纤维化的肾脏纤维化形成的多方面程序,最终导致慢性肾脏病。最近的研究结果表明,p53 是 TGF-β1 诱导的信号通路的辅助因子,也是几个 TGF-β1 促纤维化反应基因的转录核心调节剂,通过与受体激活的 SMAD 形成复合物,SMAD 与小线虫(SMA)和抑制胚胎发育的母基因(MAD)家族同源。协同的 p53-TGF-β1 基因组簇包括参与细胞生长控制和细胞外基质重塑的基因[如纤溶酶原激活物抑制剂-1(PAI-1;丝氨酸蛋白酶抑制剂,E 族,成员 1)、结缔组织生长因子和胶原 I]。虽然这种协同依赖的分子基础尚不清楚,但许多 TGF-β1 反应基因都具有 p53 结合基序。p53 的上调和磷酸化增加;此外,它们在肾毒物和缺血/再灌注损伤、糖尿病肾病、输尿管梗阻性疾病和肾移植排斥中都很明显。针对 p53 的药理学和遗传学方法可降低相关基因的表达并减轻纤维化反应,这证实了 p53 在肾脏疾病中的关键作用。本综述重点介绍了 p53 在 TGF-β1 簇中作为转录调节剂的作用机制,重点介绍了强效促纤维化的 PAI-1 基因。-Higgins, C. E., Tang, J., Mian, B. M., Higgins, S. P., Gifford, C. C., Conti, D. J., Meldrum, K. K., Samarakoon, R., Higgins, P. J. TGF-β1-p53 协同调节肾脏中的促纤维化基因组程序:分子机制和临床意义。

相似文献

2
Rac-GTPase promotes fibrotic TGF-β1 signaling and chronic kidney disease EGFR, p53, and Hippo/YAP/TAZ pathways.
FASEB J. 2019 Sep;33(9):9797-9810. doi: 10.1096/fj.201802489RR. Epub 2019 May 16.
3
Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species.
Cell Signal. 2013 Nov;25(11):2198-209. doi: 10.1016/j.cellsig.2013.07.007. Epub 2013 Jul 18.
5
Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity.
Cell Signal. 2014 Jul;26(7):1427-36. doi: 10.1016/j.cellsig.2014.02.017. Epub 2014 Mar 5.
6
TGF-β1 → SMAD/p53/USF2 → PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis.
Cell Tissue Res. 2012 Jan;347(1):117-28. doi: 10.1007/s00441-011-1181-y. Epub 2011 Jun 4.
7
TGF-β1/p53 signaling in renal fibrogenesis.
Cell Signal. 2018 Mar;43:1-10. doi: 10.1016/j.cellsig.2017.11.005. Epub 2017 Nov 28.
8
The Genomic Response to TGF-β1 Dictates Failed Repair and Progression of Fibrotic Disease in the Obstructed Kidney.
Front Cell Dev Biol. 2021 Jul 2;9:678524. doi: 10.3389/fcell.2021.678524. eCollection 2021.
9
Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype.
FASEB J. 2018 May;32(5):2644-2657. doi: 10.1096/fj.201700722R. Epub 2018 Jan 3.

引用本文的文献

4
Mechanisms of norcantharidin against renal tubulointerstitial fibrosis.
Pharmacol Rep. 2024 Apr;76(2):263-272. doi: 10.1007/s43440-024-00578-5. Epub 2024 Mar 12.
6
p53 and Myofibroblast Apoptosis in Organ Fibrosis.
Int J Mol Sci. 2023 Apr 4;24(7):6737. doi: 10.3390/ijms24076737.
7
Shen Qi Wan-Containing Serum Alleviates Renal Interstitial Fibrosis via Restraining Notch1-Mediated Epithelial-Mesenchymal Transition.
Evid Based Complement Alternat Med. 2023 Feb 6;2023:3352353. doi: 10.1155/2023/3352353. eCollection 2023.
9
Factors associated with the progression of mesangial lesions in IgA nephropathy: A comparative analysis of renal re-biopsies.
Front Endocrinol (Lausanne). 2022 Nov 21;13:1004289. doi: 10.3389/fendo.2022.1004289. eCollection 2022.
10
Emerging role of tumor suppressor p53 in acute and chronic kidney diseases.
Cell Mol Life Sci. 2022 Aug 9;79(9):474. doi: 10.1007/s00018-022-04505-w.

本文引用的文献

1
NUMB maintains bone mass by promoting degradation of PTEN and GLI1 via ubiquitination in osteoblasts.
Bone Res. 2018 Nov 10;6:32. doi: 10.1038/s41413-018-0030-y. eCollection 2018.
2
Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury.
Cell Death Dis. 2018 Nov 13;9(11):1126. doi: 10.1038/s41419-018-1157-x.
4
TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration.
JCI Insight. 2018 Nov 2;3(21):123563. doi: 10.1172/jci.insight.123563.
5
P53 in kidney injury and repair: Mechanism and therapeutic potentials.
Pharmacol Ther. 2019 Mar;195:5-12. doi: 10.1016/j.pharmthera.2018.10.013. Epub 2018 Oct 19.
6
New approach for understanding genome variations in KEGG.
Nucleic Acids Res. 2019 Jan 8;47(D1):D590-D595. doi: 10.1093/nar/gky962.
7
Renal tubules transcriptome reveals metabolic maladaption during the progression of ischemia-induced acute kidney injury.
Biochem Biophys Res Commun. 2018 Oct 28;505(2):432-438. doi: 10.1016/j.bbrc.2018.08.111. Epub 2018 Sep 25.
8
USF2 inhibits the transcriptional activity of Smurf1 and Smurf2 to promote breast cancer tumorigenesis.
Cell Signal. 2019 Jan;53:49-58. doi: 10.1016/j.cellsig.2018.09.013. Epub 2018 Sep 21.
9
Relationship of Transforming Growth Factor-βl and Arginase-1 Levels with Long-term Survival after Kidney Transplantation.
Curr Med Sci. 2018 Jun;38(3):455-460. doi: 10.1007/s11596-018-1900-7. Epub 2018 Jun 22.
10
YAP/TAZ upstream signals and downstream responses.
Nat Cell Biol. 2018 Aug;20(8):888-899. doi: 10.1038/s41556-018-0142-z. Epub 2018 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验