Suppr超能文献

载姜黄素纳米粒靶向治疗癌症的研究进展。

Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development.

机构信息

Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.

Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.

出版信息

Anticancer Agents Med Chem. 2019;19(13):1560-1576. doi: 10.2174/1871520619666190705150214.

Abstract

The spread of metastatic cancer cell is the main cause of death worldwide. Cellular and molecular basis of the action of phytochemicals in the modulation of metastatic cancer highlights the importance of fruits and vegetables. Quercetin is a natural bioflavonoid present in fruits, vegetables, seeds, berries, and tea. The cancer-preventive activity of quercetin is well documented due to its anti-inflammatory, anti-proliferative and anti-angiogenic activities. However, poor water solubility and delivery, chemical instability, short half-life, and low-bioavailability of quercetin limit its clinical application in cancer chemoprevention. A better understanding of the molecular mechanism of controlled and regulated drug delivery is essential for the development of novel and effective therapies. To overcome the limitations of accessibility by quercetin, it can be delivered as nanoconjugated quercetin. Nanoconjugated quercetin has attracted much attention due to its controlled drug release, long retention in tumor, enhanced anticancer potential, and promising clinical application. The pharmacological effect of quercetin conjugated nanoparticles typically depends on drug carriers used such as liposomes, silver nanoparticles, silica nanoparticles, PLGA (Poly lactic-co-glycolic acid), PLA (poly(D,L-lactic acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, etc. In this review, we described various delivery systems of nanoconjugated quercetin like liposomes, silver nanoparticles, PLGA (Poly lactic-co-glycolic acid), and polymeric micelles including DOX conjugated micelles, metal conjugated micelles, nucleic acid conjugated micelles, and antibody-conjugated micelles on and in vivo tumor models; as well as validated their potential as promising onco-therapeutic agents in light of recent updates.

摘要

转移性癌细胞的扩散是全球死亡的主要原因。植物化学物质在调节转移性癌症中的作用的细胞和分子基础突出了水果和蔬菜的重要性。槲皮素是一种天然生物类黄酮,存在于水果、蔬菜、种子、浆果和茶中。由于其抗炎、抗增殖和抗血管生成活性,槲皮素的抗癌活性已得到充分证明。然而,由于其水溶性和递送性差、化学稳定性差、半衰期短和生物利用度低,限制了其在癌症化学预防中的临床应用。更好地了解受控和调节药物递送的分子机制对于开发新型有效的治疗方法至关重要。为了克服槲皮素的可及性限制,可以将其作为纳米共轭槲皮素递送来实现。纳米共轭槲皮素由于其控制药物释放、在肿瘤中长时间保留、增强抗癌潜力和有前途的临床应用而受到广泛关注。共轭纳米粒子的药理学效应通常取决于所使用的药物载体,如脂质体、银纳米粒子、硅纳米粒子、PLGA(聚乳酸-共-羟基乙酸)、PLA(聚(D,L-乳酸))纳米粒子、聚合物胶束、壳聚糖纳米粒子等。在这篇综述中,我们描述了各种纳米共轭槲皮素的递送系统,如脂质体、银纳米粒子、PLGA(聚乳酸-共-羟基乙酸)和聚合物胶束,包括 DOX 共轭胶束、金属共轭胶束、核酸共轭胶束和抗体共轭胶束,并在体内肿瘤模型上验证了它们作为有前途的肿瘤治疗剂的潜力,同时根据最新进展对其进行了评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验