Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, 28049 Madrid, Spain; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, Mexico.
Laboratory of Phytochemistry and Plant Food Functionality, Biotechnology and Food Microbiology Department, Institute of Food Science Research (CIAL) (CSIC-UAM), C/ Nicolás Cabrera, 9, 28049 Madrid, Spain; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, NL, Mexico.
Food Res Int. 2019 Sep;123:538-549. doi: 10.1016/j.foodres.2019.05.017. Epub 2019 May 13.
The carotenoid and carotenoid ester profile in astringent persimmon (Diospyros kaki Thunb., var. Rojo Brillante) was composed by 13 free xanthophylls, 8 hydrocarbon carotenes and 17 carotenoid esters. The stability and biaoccessibility of these carotenoids was determined by an adaptation of the INFOGEST protocol. Results showed that the stability of persimmon carotenoids ranged from 61 to 74%, depending on the digestion phase, being (all-E)-β-cryptoxanthin and (all-E)-antheraxanthin 3-O-palmitate the most stable carotenoids. At the final step of the digestion (oral + gastric + duodenal phase), only traces of (all-E)-antheraxanthin, (all-E)-lutein and (all-E)-β-cryptoxanthin were found in control samples due to the low efficiency of carotenoid micellization, which was affected by the high pectin content naturally present in persimmon tissues. Processing increased the overall carotenoid bioaccessibility to 54% in pressurized samples and to 25% in thermal treated ones. This effect depended on the processing technology as well as on the chemical structure of the carotenoid, being (all-E)-β-cryptoxanthin and (all-E)-β-cryptoxanthin laurate the most bioaccessible carotenoids in pressurized samples and (all-E)-β-cryptoxanthin laurate and (all-E)-antheraxanthin the most bioaccessible ones in pasteurized ones.
涩柿(Diospyros kaki Thunb.,var. Rojo Brillante)中的类胡萝卜素和类胡萝卜素酯谱由 13 种游离叶黄素、8 种烃类类胡萝卜素和 17 种类胡萝卜素酯组成。通过 INFOGEST 协议的改编,确定了这些类胡萝卜素的稳定性和生物可利用性。结果表明,涩柿类胡萝卜素的稳定性范围为 61%至 74%,取决于消化阶段,其中(全-E)-β-隐黄质和(全-E)-玉米黄质 3-O-棕榈酸酯是最稳定的类胡萝卜素。在消化的最后一步(口服+胃+十二指肠阶段),由于类胡萝卜素胶束化效率低,控制样品中仅检测到痕量的(全-E)-玉米黄质、(全-E)-叶黄素和(全-E)-β-隐黄质,这是由于果胶含量高,这会影响到类胡萝卜素在涩柿组织中的天然存在。加工可使加压样品中的总类胡萝卜素生物利用度提高到 54%,使热加工样品中的总类胡萝卜素生物利用度提高到 25%。这种效果取决于加工技术以及类胡萝卜素的化学结构,在加压样品中,(全-E)-β-隐黄质和(全-E)-β-隐黄质月桂酸酯是最易生物利用的类胡萝卜素,而在巴氏杀菌样品中,(全-E)-β-隐黄质月桂酸酯和(全-E)-玉米黄质是最易生物利用的类胡萝卜素。