文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Brachyury 基因非病毒转染可将人椎间盘细胞重编程为促合成代谢、抗分解代谢/抗炎表型:概念验证研究。

Nonviral Transfection With Brachyury Reprograms Human Intervertebral Disc Cells to a Pro-Anabolic Anti-Catabolic/Inflammatory Phenotype: A Proof of Concept Study.

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio.

Department of Orthopedics, The Ohio State University Wexner Medical Center, Columbus, Ohio.

出版信息

J Orthop Res. 2019 Nov;37(11):2389-2400. doi: 10.1002/jor.24408. Epub 2019 Jul 29.


DOI:10.1002/jor.24408
PMID:31286562
Abstract

Intervertebral disc (IVD) degeneration is a major contributor to chronic low back pain and is characterized by decreases in cellularity and proteoglycan synthesis, upregulation of matrix degradation, and increases in pro-inflammatory factors with neurovascular invasion. Current treatments fail to target the underlying pathology or promote tissue repair and approaches such as viral transfection raise safety concerns due to mutagenesis and unwarranted immune responses. To avoid such concerns, nonviral transfection is a viable method of gene delivery into the host cell while bypassing the caveats of viral delivery. Brachyury is expressed in the developing notochord and is associated with an immature healthy nucleus pulposus (NP). We hypothesize that Brachyury can reprogram degenerate NP cells to a healthy pro-anabolic phenotype with increased proteoglycan content and decreased expression of catabolic, inflammatory, and neurovascular markers. NP cells obtained from human autopsy and surgical tissues were transfected with plasmids encoding for Brachyury or an empty vector control via bulk electroporation. Post transfection, cells were seeded in three-dimensional agarose constructs cultured over 4 weeks and analyzed for viability, gene expression, and proteoglycan. Results demonstrated successful transfection of both autopsy and surgical NP cells. We observed long-term Brachyury expression, significant increased expression of NP phenotypic markers FOXF1, KRT19, and chondrogenic marker SOX9 with decreases in inflammatory cytokines IL1-β/IL6, NGF, and MMPs and significant increases in glycosaminoglycan accumulation. These results highlight nonviral transfection with developmental transcription factors, such as Brachyury, as a promising method to reprogram degenerate human disc cells toward a healthy NP phenotype. Clinical significance: This project proposes a novel translational approach for the treatment of intervertebral disc degeneration via direct reprogramming of diseased human patient-derived IVD cells to a healthy phenotype. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2389-2400, 2019.

摘要

椎间盘(IVD)退变是慢性腰痛的主要原因,其特征是细胞减少和蛋白聚糖合成减少,基质降解增加,以及前炎症因子增加和神经血管入侵。目前的治疗方法未能针对潜在的病理变化,也未能促进组织修复,而病毒转染等方法由于基因突变和不必要的免疫反应而引起安全问题。为了避免这些问题,非病毒转染是将基因递送入宿主细胞的可行方法,同时避免了病毒递送的缺点。Brachyury 在发育中的脊索中表达,并与未成熟的健康髓核(NP)相关。我们假设 Brachyury 可以将退变的 NP 细胞重新编程为具有更高蛋白聚糖含量和降低的代谢物、炎症和神经血管标志物表达的健康前合成表型。通过 bulk 电穿孔将编码 Brachyury 或空载体对照的质粒转染到从人体尸检和手术组织中获得的 NP 细胞中。转染后,将细胞接种在三维琼脂糖构建体中,培养 4 周,然后分析细胞活力、基因表达和蛋白聚糖。结果表明,尸检和手术 NP 细胞的转染均成功。我们观察到 Brachyury 的长期表达,NP 表型标志物 FOXF1、KRT19 和软骨形成标志物 SOX9 的表达显著增加,同时炎症细胞因子 IL1-β/IL6、NGF 和 MMPs 减少,糖胺聚糖积累显著增加。这些结果突出了非病毒转染与发育转录因子(如 Brachyury)相结合,是一种有前途的方法,可以将退变的人类椎间盘细胞重新编程为健康的 NP 表型。临床意义:本项目提出了一种通过直接将患病的人类患者源性 IVD 细胞重编程为健康表型来治疗椎间盘退变的新的转化方法。

相似文献

[1]
Nonviral Transfection With Brachyury Reprograms Human Intervertebral Disc Cells to a Pro-Anabolic Anti-Catabolic/Inflammatory Phenotype: A Proof of Concept Study.

J Orthop Res. 2019-7-29

[2]
Non-viral reprogramming of human nucleus pulposus cells with FOXF1 via extracellular vesicle delivery: an in vitro and in vivo study.

Eur Cell Mater. 2021-1-19

[3]
Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration.

J Orthop Res. 2016-8

[4]
Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model.

Theranostics. 2019-10-12

[5]
Phototherapy suppresses inflammation in human nucleus pulposus cells for intervertebral disc degeneration.

Lasers Med Sci. 2018-7

[6]
Nonviral overexpression of Scleraxis or Mohawk drives reprogramming of degenerate human annulus fibrosus cells from a diseased to a healthy phenotype.

JOR Spine. 2023-6-27

[7]
Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells.

J Orthop Res. 2016-8

[8]
Brachyury promotes extracellular matrix synthesis through transcriptional regulation of Smad3 in nucleus pulposus.

Am J Physiol Cell Physiol. 2024-5-1

[9]
High mobility group box-1 induces pro-inflammatory signaling in human nucleus pulposus cells via toll-like receptor 4-dependent pathway.

J Orthop Res. 2018-10-29

[10]
Self-complementary adeno-associated virus serotype 6 mediated knockdown of ADAMTS4 induces long-term and effective enhancement of aggrecan in degenerative human nucleus pulposus cells: A new therapeutic approach for intervertebral disc disorders.

PLoS One. 2017-2-16

引用本文的文献

[1]
Regenerative strategies for intervertebral disc degeneration.

J Orthop Translat. 2025-7-4

[2]
N-methyladenosine and intervertebral disc degeneration: Advances in detection and pathological insights.

J Orthop Translat. 2025-6-5

[3]
Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus.

J Dev Biol. 2024-7-3

[4]
Single-cell Transcriptomic Studies Unveil Potential Nodes of the Notochord Gene Regulatory Network.

Integr Comp Biol. 2024-11-21

[5]
Dedifferentiation-like reprogramming of degenerative nucleus pulposus cells into notochordal-like cells by defined factors.

Mol Ther. 2024-8-7

[6]
Brachyury promotes extracellular matrix synthesis through transcriptional regulation of Smad3 in nucleus pulposus.

Am J Physiol Cell Physiol. 2024-5-1

[7]
Characterization and modulation of the pro-inflammatory effects of immune cells in the canine intervertebral disk.

JOR Spine. 2024-4-23

[8]
Engineered extracellular vesicle-based gene therapy for the treatment of discogenic back pain.

Biomaterials. 2024-7

[9]
Updates on Pathophysiology of Discogenic Back Pain.

J Clin Med. 2023-11-2

[10]
Nonviral overexpression of Scleraxis or Mohawk drives reprogramming of degenerate human annulus fibrosus cells from a diseased to a healthy phenotype.

JOR Spine. 2023-6-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索