3155 Biomedical and Materials Engineering Complex, 140 W. 19th Ave, Columbus, OH 43210,
Eur Cell Mater. 2021 Jan 19;41:90-107. doi: 10.22203/eCM.v041a07.
Intervertebral disc (IVD) degeneration is characterized by decreased cellularity and proteoglycan synthesis and increased inflammation, catabolism, and neural/vascular ingrowth. Regenerative methods for IVD degeneration are largely cell-therapy-based or involve viral vectors, which are associated with mutagenesis and undesired immune responses. The present study used bulk electroporation and engineered extracellular vesicles (EVs) to deliver forkhead-box F1 (FOXF1) mRNA to degenerate human nucleus pulposus (NP) cells as a minimally invasive therapeutic strategy for IVD regeneration. Bulk electroporation was used to investigate FOXF1 effects on human NP cells during a 4-week culture in 3D agarose constructs. Engineered EV delivery of FOXF1 into human IVD cells in monolayer was determined, with subsequent in vivo validation in a pilot mouse IVD puncture model. FOXF1 transfection significantly altered gene expression by upregulating healthy NP markers [FOXF1, keratin 19 (KRT19)], decreasing inflammatory cytokines [interleukin (IL)-1β, -6], catabolic enzymes [metalloproteinase 13 (MMP13)] and nerve growth factor (NGF), with significant increases in glycosaminoglycan accumulation in human NP cells. Engineered EVs loaded with FOXF1 demonstrated successful encapsulation of FOXF1 cargo and effective uptake by human NP cells cultured in monolayer. Injection of FOXF1-loaded EVs into the mouse IVD in vivo resulted in a significant upregulation of FOXF1 and Brachyury, compared to controls at 7 d post-injection, with no evidence of cytotoxicity. This is the first study to demonstrate non-viral delivery of FOXF1 and reprogramming of human NP cells in vitro and mouse IVD cells in vivo. This strategy represents a non-addictive approach for treating IVD degeneration and associated back pain.
椎间盘(IVD)退变的特征是细胞减少和蛋白聚糖合成减少,以及炎症、分解代谢和神经/血管侵入增加。IVD 退变的再生方法主要基于细胞疗法或涉及病毒载体,这与突变和不期望的免疫反应有关。本研究使用批量电穿孔和工程细胞外囊泡(EVs)将叉头框 F1(FOXF1)mRNA 递送至退变的人髓核(NP)细胞,作为 IVD 再生的微创治疗策略。批量电穿孔用于研究 FOXF1 在 3D 琼脂糖构建体中培养 4 周期间对人 NP 细胞的影响。确定了 FOXF1 在单层培养的人 IVD 细胞中的工程 EV 传递,并随后在小鼠 IVD 穿刺模型中进行了体内验证。FOXF1 转染通过上调健康 NP 标志物[FOXF1、角蛋白 19(KRT19)]、降低炎症细胞因子[白细胞介素(IL)-1β、-6]、分解代谢酶[金属蛋白酶 13(MMP13)]和神经生长因子(NGF),显著增加人 NP 细胞中的糖胺聚糖积累,显著改变基因表达。负载 FOXF1 的工程 EV 成功地封装了 FOXF1 货物,并有效地被单层培养的人 NP 细胞摄取。在体内将负载 FOXF1 的 EV 注射到小鼠 IVD 中,与对照相比,在注射后 7d 时,FOXF1 和 Brachyury 的表达显著上调,没有证据表明细胞毒性。这是第一项证明非病毒递送 FOXF1 和体外人 NP 细胞以及体内小鼠 IVD 细胞重编程的研究。这种策略代表了治疗 IVD 退变和相关腰痛的非成瘾性方法。