Valiev Rashid R, Hasan Galib, Salo Vili-Taneli, Kubečka Jakub, Kurten Theo
Department of Chemistry , University of Helsinki , P.O. Box 55, (A.I. Virtanens Plats 1) , Helsinki FIN-00014 , Finland.
Tomsk State University , 36, Lenin Avenue , 634050 Tomsk , Russia.
J Phys Chem A. 2019 Aug 1;123(30):6596-6604. doi: 10.1021/acs.jpca.9b02559. Epub 2019 Jul 23.
High molecular weight "ROOR'" dimers, likely formed in the gas phase through self- and cross-reactions of complex peroxy radicals (RO), have been suggested to play a key role in forming ultrafine aerosol particles in the atmosphere. However, the molecular-level reaction mechanism producing these dimers remains unknown. Using multireference quantum chemical methods, we explore one potentially competitive pathway for ROOR' production, involving the initial formation of triplet alkoxy radical (RO) pairs, followed by extremely rapid intersystem crossings (ISC) to the singlet surface, permitting subsequent recombination to ROOR'. Using CHOO + CHOO as a model system, we show that the initial steps of this reaction mechanism are likely to be very fast, as the transition states for both the formation and the decomposition of the CHOCH tetroxide intermediate are far below the reactants in energy. Next, we compute ISC rates for seven different atmospherically relevant (RO···R'O) complexes. The ISC rates vary significantly depending on the conformation of the complex and also exhibit strong stereoselectivity. Furthermore, the fastest ISC process is usually not between the lowest-energy triplet and singlet states but between the triplet ground state and an exited singlet state. For each studied (RO···R'O) system, at least one low-energy conformer with an ISC rate above 10 s can be found. This demonstrates that gas-phase dimer formation in the atmosphere very likely involves ISCs originating in relativistic quantum mechanics.
高分子量的“ROOR'”二聚体可能是在气相中通过复杂过氧自由基(RO)的自反应和交叉反应形成的,有人认为它们在大气中形成超细气溶胶颗粒的过程中起关键作用。然而,产生这些二聚体的分子水平反应机制仍然未知。我们使用多参考量子化学方法,探索了一种潜在的竞争性ROOR'生成途径,该途径涉及三重态烷氧基自由基(RO)对的初始形成,随后极快速地系间窜越(ISC)到单重态表面,从而允许随后重组为ROOR'。以CHOO + CHOO作为模型系统,我们表明该反应机制的初始步骤可能非常快,因为CHOCH四氧化物中间体形成和分解的过渡态在能量上远低于反应物。接下来,我们计算了七种不同的与大气相关的(RO···R'O)配合物的ISC速率。ISC速率根据配合物的构象有很大差异,并且还表现出很强的立体选择性。此外,最快的ISC过程通常不是在能量最低的三重态和单重态之间,而是在三重态基态和一个激发单重态之间。对于每个研究的(RO···R'O)系统,都可以找到至少一个ISC速率高于10 s的低能量构象异构体。这表明大气中的气相二聚体形成很可能涉及源自相对论量子力学的ISC。