The Ecosystems Center, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA, 02543, USA.
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
Nat Commun. 2019 Jul 9;10(1):3024. doi: 10.1038/s41467-019-10944-0.
Nitrogen (N) availability exerts strong control on carbon storage in the forests of Northern Eurasia. Here, using a process-based model, we explore how three factors that alter N availability-permafrost degradation, atmospheric N deposition, and the abandonment of agricultural land to forest regrowth (land-use legacy)-affect carbon storage in the region's forest vegetation over the 21st century within the context of two IPCC global-change scenarios (RCPs 4.5 and 8.5). For RCP4.5, enhanced N availability results in increased tree carbon storage of 27.8 Pg C, with land-use legacy being the most important factor. For RCP8.5, enhanced N availability results in increased carbon storage in trees of 13.4 Pg C, with permafrost degradation being the most important factor. Our analysis reveals complex spatial and temporal patterns of regional carbon storage. This study underscores the importance of considering carbon-nitrogen interactions when assessing regional and sub-regional impacts of global change policies.
氮(N)供应强烈控制着北亚森林的碳储存。在这里,我们使用基于过程的模型,探讨了在两种 IPCC 全球变化情景(RCP4.5 和 RCP8.5)下,改变 N 供应的三个因素(永久冻土退化、大气 N 沉积和将农业用地弃置为森林再生(土地利用遗留问题))如何影响该地区森林植被在 21 世纪的碳储存。对于 RCP4.5,增加 N 供应会导致树木碳储存增加 27.8PgC,其中土地利用遗留问题是最重要的因素。对于 RCP8.5,增加 N 供应会导致树木碳储存增加 13.4PgC,其中永久冻土退化是最重要的因素。我们的分析揭示了区域碳储存的复杂时空模式。这项研究强调了在评估全球变化政策对区域和次区域影响时,考虑碳氮相互作用的重要性。