Suppr超能文献

解锁放射学报告数据:低剂量 CT 癌症筛查中综合放射学报告的实施。

Unlocking Radiology Reporting Data: an Implementation of Synoptic Radiology Reporting in Low-Dose CT Cancer Screening.

机构信息

Cancer Care Ontario, Toronto, Canada.

Lakeridge Health, Oshawa, Canada.

出版信息

J Digit Imaging. 2019 Dec;32(6):1044-1051. doi: 10.1007/s10278-019-00214-2.

Abstract

Cancer Care Ontario (CCO) is the clinical advisor to the Ontario Ministry of Health and Long-Term Care for the funding and delivery of cancer services. Data contained in radiology reports are inaccessible for analysis without significant manual cost and effort. Synoptic reporting includes highly structured reporting and discrete data capture, which could unlock these data for clinical and evaluative purposes. To assess the feasibility of implementing synoptic radiology reporting, a trial implementation was conducted at one hospital within CCO's Lung Cancer Screening Pilot for People at High Risk. This project determined that it is feasible to capture synoptic data with some barriers. Radiologists require increased awareness when reporting cases with a large number of nodules due to lack of automation within the system. These challenges may be mitigated by implementation of some report automation. Domains such as pathology and public health reporting have addressed some of these challenges with standardized reports based on interoperable standards, and radiology could borrow techniques from these domains to assist in implementing synoptic reporting. Data extraction from the reports could also be significantly automated to improve the process and reduce the workload in collecting the data. RadLex codes aided the difficult data extraction process, by helping label potential ambiguity with common terms and machine-readable identifiers.

摘要

安大略省癌症护理中心(Cancer Care Ontario,简称 CCO)是安大略省卫生部和长期护理部的临床顾问,负责癌症服务的资金和提供。如果不花费大量人力和财力进行重大修改,放射学报告中的数据无法进行分析。综合报告包括高度结构化的报告和离散数据采集,这可以为临床和评估目的解锁这些数据。为了评估实施综合放射学报告的可行性,CCO 的肺癌筛查试点项目在一家医院进行了试点实施,该项目针对高危人群。该项目确定,通过一些障碍,捕获综合数据是可行的。由于系统中缺乏自动化,放射科医生在报告大量结节的病例时需要提高认识。通过实施一些报告自动化,这些挑战可能会得到缓解。病理学和公共卫生报告等领域已经通过基于互操作标准的标准化报告解决了其中的一些挑战,放射学可以借鉴这些领域的技术来协助实施综合报告。通过提取报告中的数据,可以大大提高自动化程度,从而改善数据收集过程,并减少工作量。RadLex 代码通过帮助标记常见术语和机器可读标识符的潜在歧义,协助了困难的数据提取过程。

相似文献

10
Lung Cancer Screening: Why, When, and How?肺癌筛查:为何、何时以及如何进行?
Radiol Clin North Am. 2017 Nov;55(6):1163-1181. doi: 10.1016/j.rcl.2017.06.003.

引用本文的文献

1
Next-Gen Radiology: Disease-specific structured reports.下一代放射学:疾病特异性结构化报告。
Eur Radiol. 2025 Sep;35(9):5220-5222. doi: 10.1007/s00330-025-11482-8. Epub 2025 Mar 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验