College of Life Sciences, Capital Normal University, Beijing, 100048, China.
Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China.
Sci China Life Sci. 2019 Aug;62(8):1047-1057. doi: 10.1007/s11427-019-9584-1. Epub 2019 Jul 8.
Leaf nitrogen (N) and phosphorus (P) concentrations are critical for photosynthesis, growth, reproduction and other ecological processes of plants. Previous studies on large-scale biogeographic patterns of leaf N and P stoichiometric relationships were mostly conducted using data pooled across taxa, while family/genus-level analyses are rarely reported. Here, we examined global patterns of family-specific leaf N and P stoichiometry using a global data set of 12,716 paired leaf N and P records which includes 204 families, 1,305 genera, and 3,420 species. After determining the minimum size of samples (i.e., 35 records), we analyzed leaf N and P concentrations, N:P ratios and N∼P scaling relationships of plants for 62 families with 11,440 records. The numeric values of leaf N and P stoichiometry varied significantly across families and showed diverse trends along gradients of mean annual temperature (MAT) and mean annual precipitation (MAP). The leaf N and P concentrations and N:P ratios of 62 families ranged from 6.11 to 30.30 mg g, 0.27 to 2.17 mg g, and 10.20 to 35.40, respectively. Approximately 1/3-1/2 of the families (22-35 of 62) showed a decrease in leaf N and P concentrations and N:P ratios with increasing MAT or MAP, while the remainder either did not show a significant trend or presented the opposite pattern. Family-specific leaf N∼P scaling exponents did not converge to a certain empirical value, with a range of 0.307-0.991 for 54 out of 62 families which indicated a significant N∼P scaling relationship. Our results for the first time revealed large variation in the family-level leaf N and P stoichiometry of global terrestrial plants and that the stoichiometric relationships for at least one-third of the families were not consistent with the global trends reported previously. The numeric values of the family-specific leaf N and P stoichiometry documented in the current study provide critical synthetic parameters for biogeographic modeling and for further studies on the physiological and ecological mechanisms underlying the nutrient use strategies of plants from different phylogenetic taxa.
叶片氮(N)和磷(P)浓度对植物的光合作用、生长、繁殖和其他生态过程至关重要。以前关于叶片 N 和 P 化学计量比率的大尺度生物地理格局的研究大多是使用跨分类群汇总的数据进行的,而很少有关于科/属水平分析的报道。在这里,我们使用包含 204 科、1305 属和 3420 种的全球叶片 N 和 P 记录数据集,研究了特定科的叶片 N 和 P 化学计量比的全球模式。在确定了样本的最小大小(即 35 个记录)之后,我们分析了具有 11440 个记录的 62 个科的叶片 N 和 P 浓度、N:P 比和 N∼P 标度关系。叶片 N 和 P 化学计量比在科间差异显著,并沿着年均温度(MAT)和年均降水量(MAP)梯度呈现出不同的趋势。62 个科的叶片 N 和 P 浓度、N:P 比的范围分别为 6.11-30.30mg/g、0.27-2.17mg/g 和 10.20-35.40,大约 1/3-1/2(22-35 个)的科的叶片 N 和 P 浓度和 N:P 比随着 MAT 或 MAP 的增加而降低,而其余的科则没有表现出显著的趋势或呈现出相反的模式。特定科的叶片 N∼P 标度指数并没有收敛到某个经验值,62 个科中的 54 个科的范围为 0.307-0.991,这表明存在显著的 N∼P 标度关系。我们的研究结果首次揭示了全球陆地植物科间叶片 N 和 P 化学计量比的巨大变化,并且至少三分之一的科的化学计量关系与以前报道的全球趋势不一致。本研究记录的特定科叶片 N 和 P 化学计量比的数值为生物地理模型提供了关键的综合参数,也为进一步研究不同系统发育分类群植物的养分利用策略的生理和生态机制提供了基础。