Moreno Miquel, Gelabert Ricard, Lluch José M
Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
Phys Chem Chem Phys. 2019 Aug 7;21(29):16075-16082. doi: 10.1039/c9cp03324f. Epub 2019 Jul 10.
Many efforts are currently being devoted to designing molecular photoswitches with specific properties. In this sense, a recent publication [D. J. van Dijken et al., J. Am. Chem. Soc., 2015, 137, 14982-14991] has synthesized and analyzed the photochromic properties of a large set of acylhydrazones (ACHs), a relatively unexploited class of potential photoswitches with two stable E and Z isomers. This study has revealed a very diverse and complex pattern of the absorption/emission properties of ACHs depending on the substituents attached to the ACH motif. In this work, high level theoretical calculations are performed on a representative set of the experimentally studied ACHs in order to analyze, at the molecular level, the reasons behind the different photochemistries experimentally observed. This systematic study allows for the classification of the full set of ACHs into just four categories. The two more common groups display a small, either positive or negative, shift of the maximum wavelength of absorption between the E and Z isomers. Less common, but far more interesting from a practical point of view, are the compounds that show a large (>100 nm) Stokes shift. This behavior may arise from two different situations. The most common one implies the possibility of an intramolecular proton transfer in the excited electronic state of the less stable Z isomer. The less likely scenario would also involve a loss of the azidic proton through an intermolecular proton transfer that would take place with the aid of the solvent.
目前,许多研究致力于设计具有特定性质的分子光开关。从这个意义上说,最近的一篇论文[D. J. van Dijken等人,《美国化学会志》,2015年,137卷,14982 - 14991页]合成并分析了大量酰腙(ACHs)的光致变色性质,酰腙是一类相对未被充分开发的潜在光开关,具有两种稳定的E型和Z型异构体。这项研究揭示了ACHs的吸收/发射性质呈现出非常多样和复杂的模式,这取决于连接在ACH基序上的取代基。在这项工作中,对一组具有代表性的经实验研究的ACHs进行了高水平的理论计算,以便在分子水平上分析实验观察到的不同光化学现象背后的原因。这项系统研究使得能够将所有的ACHs分为四类。两个更常见的类别在E型和Z型异构体之间最大吸收波长上有一个小的、正或负的位移。不太常见但从实际角度来看更有趣的是那些显示出大的(>100 nm)斯托克斯位移的化合物。这种行为可能源于两种不同的情况。最常见的一种情况意味着在较不稳定的Z型异构体的激发电子态中可能发生分子内质子转移。可能性较小的情况还可能涉及通过分子间质子转移失去叠氮质子,这种转移将在溶剂的帮助下发生。