Suppr超能文献

基于分子动力学模拟的评分方法预测多肽与主要组织相容性复合体 II 的亲和力。

Predicting the Affinity of Peptides to Major Histocompatibility Complex Class II by Scoring Molecular Dynamics Simulations.

机构信息

Biophysics of Tropical Diseases, Max Planck Tandem Group , University of Antioquia , 050010 Medellin , Colombia.

International School for Advanced Studies (SISSA) , Via Bonomea 265 , 34136 Trieste , Italy.

出版信息

J Chem Inf Model. 2019 Aug 26;59(8):3464-3473. doi: 10.1021/acs.jcim.9b00403. Epub 2019 Jul 23.

Abstract

Predicting the binding affinity of peptides able to interact with major histocompatibility complex (MHC) molecules is a priority for researchers working in the identification of novel vaccines candidates. Most available approaches are based on the analysis of the sequence of peptides of known experimental affinity. However, for MHC class II receptors, these approaches are not very accurate, due to the intrinsic flexibility of the complex. To overcome these limitations, we propose to estimate the binding affinity of peptides bound to an MHC class II by averaging the score of the configurations from finite-temperature molecular dynamics simulations. The score is estimated for 18 different scoring functions, and we explored the optimal manner for combining them. To test the predictions, we considered eight peptides of known binding affinity. We found that six scoring functions correlate with the experimental ranking of the peptides significantly better than the others. We then assessed a set of techniques for combining the scoring functions by linear regression and logistic regression. We obtained a maximum accuracy of 82% for the predicted sign of the binding affinity using a logistic regression with optimized weights. These results are potentially useful to improve the reliability of protocols to design high-affinity binding peptides for MHC class II receptors.

摘要

预测能够与主要组织相容性复合体 (MHC) 分子相互作用的肽的结合亲和力是从事新型疫苗候选物鉴定的研究人员的首要任务。大多数可用的方法都是基于对已知实验亲和力的肽序列的分析。然而,对于 MHC 类 II 受体,由于复合物的内在灵活性,这些方法并不十分准确。为了克服这些限制,我们建议通过平均有限温度分子动力学模拟的构象得分来估计与 MHC 类 II 结合的肽的结合亲和力。对 18 种不同的评分函数进行了评分,并探讨了它们的最佳组合方式。为了检验预测结果,我们考虑了八个具有已知结合亲和力的肽。我们发现,有六个评分函数与实验肽的排序相关性明显优于其他评分函数。然后,我们通过线性回归和逻辑回归评估了组合评分函数的一组技术。使用优化权重的逻辑回归,我们获得了预测结合亲和力符号的最大准确性为 82%。这些结果对于提高设计 MHC 类 II 受体高亲和力结合肽的协议的可靠性可能是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验