Suppr超能文献

变革基于肽的药物发现:后AlphaFold时代的进展

Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era.

作者信息

Chang Liwei, Mondal Arup, Singh Bhumika, Martínez-Noa Yisel, Perez Alberto

机构信息

Department of Chemistry, University of Florida, Gainesville, FL 32611.

Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611.

出版信息

Wiley Interdiscip Rev Comput Mol Sci. 2024 Jan-Feb;14(1). doi: 10.1002/wcms.1693. Epub 2023 Nov 12.

Abstract

Peptide-based drugs offer high specificity, potency, and selectivity. However, their inherent flexibility and differences in conformational preferences between their free and bound states create unique challenges that have hindered progress in effective drug discovery pipelines. The emergence of AlphaFold (AF) and Artificial Intelligence (AI) presents new opportunities for enhancing peptide-based drug discovery. We explore recent advancements that facilitate a successful peptide drug discovery pipeline, considering peptides' attractive therapeutic properties and strategies to enhance their stability and bioavailability. AF enables efficient and accurate prediction of peptide-protein structures, addressing a critical requirement in computational drug discovery pipelines. In the post-AF era, we are witnessing rapid progress with the potential to revolutionize peptide-based drug discovery such as the ability to rank peptide binders or classify them as binders/non-binders and the ability to design novel peptide sequences. However, AI-based methods are struggling due to the lack of well-curated datasets, for example to accommodate modified amino acids or unconventional cyclization. Thus, physics-based methods, such as docking or molecular dynamics simulations, continue to hold a complementary role in peptide drug discovery pipelines. Moreover, MD-based tools offer valuable insights into binding mechanisms, as well as the thermodynamic and kinetic properties of complexes. As we navigate this evolving landscape, a synergistic integration of AI and physics-based methods holds the promise of reshaping the landscape of peptide-based drug discovery.

摘要

基于肽的药物具有高特异性、高效性和选择性。然而,它们固有的灵活性以及游离态和结合态之间构象偏好的差异带来了独特的挑战,阻碍了有效药物发现流程的进展。AlphaFold(AF)和人工智能(AI)的出现为加强基于肽的药物发现带来了新机遇。我们探讨了有助于成功开展肽类药物发现流程的最新进展,同时考虑了肽类具有吸引力的治疗特性以及增强其稳定性和生物利用度的策略。AF能够高效且准确地预测肽-蛋白质结构,满足了计算药物发现流程中的一项关键要求。在AF时代之后,我们见证了迅速的进展,这些进展有可能彻底改变基于肽的药物发现,例如对肽结合物进行排序或将它们分类为结合物/非结合物的能力,以及设计新型肽序列的能力。然而,由于缺乏精心整理的数据集,基于AI的方法面临困境,例如难以纳入修饰氨基酸或非常规环化。因此,基于物理的方法,如对接或分子动力学模拟,在肽类药物发现流程中继续发挥着补充作用。此外,基于MD的工具能够深入了解结合机制以及复合物的热力学和动力学性质。在我们探索这一不断演变的领域时,将AI和基于物理的方法进行协同整合有望重塑基于肽的药物发现格局。

相似文献

1
Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era.变革基于肽的药物发现:后AlphaFold时代的进展
Wiley Interdiscip Rev Comput Mol Sci. 2024 Jan-Feb;14(1). doi: 10.1002/wcms.1693. Epub 2023 Nov 12.
5
AlphaFold, Artificial Intelligence (AI), and Allostery.AlphaFold、人工智能 (AI) 和变构。
J Phys Chem B. 2022 Sep 1;126(34):6372-6383. doi: 10.1021/acs.jpcb.2c04346. Epub 2022 Aug 17.
6
Artificial intelligence in peptide-based drug design.基于肽的药物设计中的人工智能
Drug Discov Today. 2025 Feb;30(2):104300. doi: 10.1016/j.drudis.2025.104300. Epub 2025 Jan 20.
8
Design of Cyclic Peptide Binders Based on Fragment Docking and Assembling.基于片段对接与组装的环肽结合剂设计
J Chem Inf Model. 2025 Apr 28;65(8):4206-4218. doi: 10.1021/acs.jcim.5c00088. Epub 2025 Apr 14.
10
AI in drug discovery and its clinical relevance.人工智能在药物研发中的应用及其临床意义。
Heliyon. 2023 Jul;9(7):e17575. doi: 10.1016/j.heliyon.2023.e17575. Epub 2023 Jun 26.

引用本文的文献

4
Applications of Artificial Intelligence in Drug Repurposing.人工智能在药物重新定位中的应用。
Adv Sci (Weinh). 2025 Apr;12(14):e2411325. doi: 10.1002/advs.202411325. Epub 2025 Mar 6.

本文引用的文献

1
Score-based generative modeling for de novo protein design.基于得分的从头蛋白质设计生成模型。
Nat Comput Sci. 2023 May;3(5):382-392. doi: 10.1038/s43588-023-00440-3. Epub 2023 May 4.
3
De novo design of protein structure and function with RFdiffusion.利用 RFdiffusion 从头设计蛋白质结构和功能。
Nature. 2023 Aug;620(7976):1089-1100. doi: 10.1038/s41586-023-06415-8. Epub 2023 Jul 11.
6
Computational approaches streamlining drug discovery.计算方法简化药物发现。
Nature. 2023 Apr;616(7958):673-685. doi: 10.1038/s41586-023-05905-z. Epub 2023 Apr 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验