Suppr超能文献

变革基于肽的药物发现:后AlphaFold时代的进展

Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era.

作者信息

Chang Liwei, Mondal Arup, Singh Bhumika, Martínez-Noa Yisel, Perez Alberto

机构信息

Department of Chemistry, University of Florida, Gainesville, FL 32611.

Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL 32611.

出版信息

Wiley Interdiscip Rev Comput Mol Sci. 2024 Jan-Feb;14(1). doi: 10.1002/wcms.1693. Epub 2023 Nov 12.

Abstract

Peptide-based drugs offer high specificity, potency, and selectivity. However, their inherent flexibility and differences in conformational preferences between their free and bound states create unique challenges that have hindered progress in effective drug discovery pipelines. The emergence of AlphaFold (AF) and Artificial Intelligence (AI) presents new opportunities for enhancing peptide-based drug discovery. We explore recent advancements that facilitate a successful peptide drug discovery pipeline, considering peptides' attractive therapeutic properties and strategies to enhance their stability and bioavailability. AF enables efficient and accurate prediction of peptide-protein structures, addressing a critical requirement in computational drug discovery pipelines. In the post-AF era, we are witnessing rapid progress with the potential to revolutionize peptide-based drug discovery such as the ability to rank peptide binders or classify them as binders/non-binders and the ability to design novel peptide sequences. However, AI-based methods are struggling due to the lack of well-curated datasets, for example to accommodate modified amino acids or unconventional cyclization. Thus, physics-based methods, such as docking or molecular dynamics simulations, continue to hold a complementary role in peptide drug discovery pipelines. Moreover, MD-based tools offer valuable insights into binding mechanisms, as well as the thermodynamic and kinetic properties of complexes. As we navigate this evolving landscape, a synergistic integration of AI and physics-based methods holds the promise of reshaping the landscape of peptide-based drug discovery.

摘要

基于肽的药物具有高特异性、高效性和选择性。然而,它们固有的灵活性以及游离态和结合态之间构象偏好的差异带来了独特的挑战,阻碍了有效药物发现流程的进展。AlphaFold(AF)和人工智能(AI)的出现为加强基于肽的药物发现带来了新机遇。我们探讨了有助于成功开展肽类药物发现流程的最新进展,同时考虑了肽类具有吸引力的治疗特性以及增强其稳定性和生物利用度的策略。AF能够高效且准确地预测肽-蛋白质结构,满足了计算药物发现流程中的一项关键要求。在AF时代之后,我们见证了迅速的进展,这些进展有可能彻底改变基于肽的药物发现,例如对肽结合物进行排序或将它们分类为结合物/非结合物的能力,以及设计新型肽序列的能力。然而,由于缺乏精心整理的数据集,基于AI的方法面临困境,例如难以纳入修饰氨基酸或非常规环化。因此,基于物理的方法,如对接或分子动力学模拟,在肽类药物发现流程中继续发挥着补充作用。此外,基于MD的工具能够深入了解结合机制以及复合物的热力学和动力学性质。在我们探索这一不断演变的领域时,将AI和基于物理的方法进行协同整合有望重塑基于肽的药物发现格局。

相似文献

1
Revolutionizing Peptide-Based Drug Discovery: Advances in the Post-AlphaFold Era.
Wiley Interdiscip Rev Comput Mol Sci. 2024 Jan-Feb;14(1). doi: 10.1002/wcms.1693. Epub 2023 Nov 12.
2
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.
Biomolecules. 2025 Apr 3;15(4):524. doi: 10.3390/biom15040524.
5
AlphaFold, Artificial Intelligence (AI), and Allostery.
J Phys Chem B. 2022 Sep 1;126(34):6372-6383. doi: 10.1021/acs.jpcb.2c04346. Epub 2022 Aug 17.
6
Artificial intelligence in peptide-based drug design.
Drug Discov Today. 2025 Feb;30(2):104300. doi: 10.1016/j.drudis.2025.104300. Epub 2025 Jan 20.
7
BioProtIS: Streamlining protein-ligand interaction pipeline for analysis in genomic and transcriptomic exploration.
J Mol Graph Model. 2024 May;128:108721. doi: 10.1016/j.jmgm.2024.108721. Epub 2024 Jan 30.
8
Design of Cyclic Peptide Binders Based on Fragment Docking and Assembling.
J Chem Inf Model. 2025 Apr 28;65(8):4206-4218. doi: 10.1021/acs.jcim.5c00088. Epub 2025 Apr 14.
9
Advancements in protein structure prediction: A comparative overview of AlphaFold and its derivatives.
Comput Biol Med. 2025 Apr;188:109842. doi: 10.1016/j.compbiomed.2025.109842. Epub 2025 Feb 18.
10
AI in drug discovery and its clinical relevance.
Heliyon. 2023 Jul;9(7):e17575. doi: 10.1016/j.heliyon.2023.e17575. Epub 2023 Jun 26.

引用本文的文献

2
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.
Biomolecules. 2025 Apr 3;15(4):524. doi: 10.3390/biom15040524.
3
2024 FDA TIDES (Peptides and Oligonucleotides) Harvest.
Pharmaceuticals (Basel). 2025 Feb 20;18(3):291. doi: 10.3390/ph18030291.
4
Applications of Artificial Intelligence in Drug Repurposing.
Adv Sci (Weinh). 2025 Apr;12(14):e2411325. doi: 10.1002/advs.202411325. Epub 2025 Mar 6.
7
A Computational Pipeline for Accurate Prioritization of Protein-Protein Binding Candidates in High-Throughput Protein Libraries.
Angew Chem Int Ed Engl. 2024 Jun 10;63(24):e202405767. doi: 10.1002/anie.202405767. Epub 2024 May 8.

本文引用的文献

1
Score-based generative modeling for de novo protein design.
Nat Comput Sci. 2023 May;3(5):382-392. doi: 10.1038/s43588-023-00440-3. Epub 2023 May 4.
2
Modelling peptide-protein complexes: docking, simulations and machine learning.
QRB Discov. 2022 Sep 19;3:e17. doi: 10.1017/qrd.2022.14. eCollection 2022.
3
De novo design of protein structure and function with RFdiffusion.
Nature. 2023 Aug;620(7976):1089-1100. doi: 10.1038/s41586-023-06415-8. Epub 2023 Jul 11.
4
Hybrid computational methods combining experimental information with molecular dynamics.
Curr Opin Struct Biol. 2023 Aug;81:102609. doi: 10.1016/j.sbi.2023.102609. Epub 2023 May 22.
5
Predicting Protein-Peptide Interactions: Benchmarking Deep Learning Techniques and a Comparison with Focused Docking.
J Chem Inf Model. 2023 May 22;63(10):3158-3170. doi: 10.1021/acs.jcim.3c00602. Epub 2023 May 11.
6
Computational approaches streamlining drug discovery.
Nature. 2023 Apr;616(7958):673-685. doi: 10.1038/s41586-023-05905-z. Epub 2023 Apr 26.
7
CycPeptMPDB: A Comprehensive Database of Membrane Permeability of Cyclic Peptides.
J Chem Inf Model. 2023 Apr 10;63(7):2240-2250. doi: 10.1021/acs.jcim.2c01573. Epub 2023 Mar 17.
8
Using AlphaFold to predict the impact of single mutations on protein stability and function.
PLoS One. 2023 Mar 16;18(3):e0282689. doi: 10.1371/journal.pone.0282689. eCollection 2023.
9
Evolutionary-scale prediction of atomic-level protein structure with a language model.
Science. 2023 Mar 17;379(6637):1123-1130. doi: 10.1126/science.ade2574. Epub 2023 Mar 16.
10
Large language models generate functional protein sequences across diverse families.
Nat Biotechnol. 2023 Aug;41(8):1099-1106. doi: 10.1038/s41587-022-01618-2. Epub 2023 Jan 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验