Suppr超能文献

空心碳胶囊中的硅纳米颗粒簇(SNC@C)作为锂电池负极:实现高初始库仑效率

Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency.

作者信息

Kim Tae Jin, Yoon Jeong Hoon, Yi Gi-Ra, Yoo Pil J

机构信息

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.

出版信息

Nanoscale. 2019 Jul 28;11(28):13650-13658. doi: 10.1039/c9nr04074a. Epub 2019 Jul 10.

Abstract

Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles.

摘要

体积膨胀大以及结构粉碎一直是锂离子电池硅基负极材料中的主要问题。为克服这一限制,人们提出了核壳结构的硅碳结构,以使限制在碳壳内的硅纳米颗粒能够进行可逆的结构呼吸。然而,核壳结构负极的初始库仑效率(ICE)大幅降低,主要原因是其极高的比表面积(SSA)以及在碳壳上过度形成的固体电解质界面(SEI)。在此,我们提出一种新型结构,即由内部包裹硅纳米颗粒簇的中空碳胶囊组成(SNC@Cs),而不是使用单一含硅纳米颗粒的核壳结构。为实现这种结构设计,通过乳液聚合用聚苯乙烯基质包裹硅纳米颗粒簇(SNC@PS),随后涂覆一层聚多巴胺(PDA)层(SNC@PS@PDA)。然后,在对它们进行退火碳化后,最终制备出SNC@Cs,与传统核壳结构相比,其比表面积可降低三分之一。这些SNC@C颗粒表现出高达81%的显著高初始库仑效率值。此外,循环稳定性可提高到100次循环,因为稳定碳胶囊内适当受限的硅簇减轻了硅纳米颗粒在反复锂化-脱锂过程中的结构粉碎。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验