Suppr超能文献

基于任务的动态功能连接在群体水平上的半参数估计

Semiparametric Estimation of Task-Based Dynamic Functional Connectivity on the Population Level.

作者信息

Kudela Maria A, Dzemidzic Mario, Oberlin Brandon G, Lin Zikai, Goñi Joaquín, Kareken David A, Harezlak Jaroslaw

机构信息

Safety and Observational Statistics, Takeda R&D Data Science Institute, Takeda Pharmaceuticals, Cambridge, MA, United States.

Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States.

出版信息

Front Neurosci. 2019 Jun 21;13:583. doi: 10.3389/fnins.2019.00583. eCollection 2019.

Abstract

Dynamic functional connectivity (dFC) estimates time-dependent associations between pairs of brain region time series as typically acquired during functional MRI. dFC changes are most commonly quantified by pairwise correlation coefficients between the time series within a sliding window. Here, we applied a recently developed bootstrap-based technique (Kudela et al., 2017) to robustly estimate subject-level dFC and its confidence intervals in a task-based fMRI study (24 subjects who tasted their most frequently consumed beer and Gatorade as an appetitive control). We then combined information across subjects and scans utilizing semiparametric mixed models to obtain a group-level dFC estimate for each pair of brain regions, flavor, and the difference between flavors. The proposed approach relies on the estimated group-level dFC accounting for complex correlation structures of the fMRI data, multiple repeated observations per subject, experimental design, and subject-specific variability. It also provides condition-specific dFC and confidence intervals for the whole brain at the group level. As a summary dFC metric, we used the proportion of time when the estimated associations were either significantly positive or negative. For both flavors, our fully-data driven approach yielded regional associations that reflected known, biologically meaningful brain organization as shown in prior work, as well as closely resembled resting state networks (RSNs). Specifically, beer flavor-potentiated associations were detected between several reward-related regions, including the right ventral striatum (VST), lateral orbitofrontal cortex, and ventral anterior insular cortex (vAIC). The enhancement of right VST-vAIC association by a taste of beer independently validated the main activation-based finding (Oberlin et al., 2016). Most notably, our novel dFC methodology uncovered numerous associations undetected by the traditional static FC analysis. The data-driven, novel dFC methodology presented here can be used for a wide range of task-based fMRI designs to estimate the dFC at multiple levels-group-, individual-, and task-specific, utilizing a combination of well-established statistical methods.

摘要

动态功能连接性(dFC)用于估计脑区时间序列对之间随时间变化的关联,这通常是在功能磁共振成像(fMRI)过程中获取的。dFC的变化最常通过滑动窗口内时间序列之间的成对相关系数来量化。在此,我们应用了一种最近开发的基于自助法的技术(库德拉等人,2017年),在一项基于任务的fMRI研究中(24名受试者品尝他们最常饮用的啤酒和佳得乐作为对照)稳健地估计个体水平的dFC及其置信区间。然后,我们利用半参数混合模型整合受试者和扫描的数据,以获得每对脑区、口味以及口味之间差异的组水平dFC估计值。所提出的方法依赖于估计的组水平dFC,它考虑了fMRI数据的复杂相关结构、每个受试者的多次重复观察、实验设计以及受试者特定的变异性。它还在组水平上提供了特定条件下全脑的dFC及其置信区间。作为一个总结性的dFC指标,我们使用估计关联为显著正或负的时间比例。对于两种口味,我们完全由数据驱动的方法产生了反映已知的、具有生物学意义的脑组织结构的区域关联,如先前工作所示,并且与静息态网络(RSN)非常相似。具体而言,在几个与奖励相关的区域之间检测到了啤酒口味增强的关联,包括右侧腹侧纹状体(VST)、外侧眶额皮质和腹侧前岛叶皮质(vAIC)。啤酒口味对右侧VST - vAIC关联的增强独立验证了基于主要激活的发现(奥伯林等人,2016年)。最值得注意的是,我们新颖的dFC方法发现了许多传统静态功能连接分析未检测到的关联。这里提出的数据驱动的新颖dFC方法可用于广泛的基于任务的fMRI设计,通过结合成熟的统计方法在多个水平——组水平(group - level)、个体水平和任务特定水平估计dFC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/204f/6598619/7399f4dd05c2/fnins-13-00583-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验