Suppr超能文献

朊病毒结构和转化的全原子模型。

Full atomistic model of prion structure and conversion.

机构信息

Department of Cellular, Computational and Integrative Biology (CIBIO)-University of Trento, Povo TN, ITALY.

Department of Physics, Povo, Trento TN, ITALY.

出版信息

PLoS Pathog. 2019 Jul 11;15(7):e1007864. doi: 10.1371/journal.ppat.1007864. eCollection 2019 Jul.

Abstract

Prions are unusual protein assemblies that propagate their conformationally-encoded information in absence of nucleic acids. The first prion identified, the scrapie isoform (PrPSc) of the cellular prion protein (PrPC), caused epidemic and epizootic episodes [1]. Most aggregates of other misfolding-prone proteins are amyloids, often arranged in a Parallel-In-Register-β-Sheet (PIRIBS) [2] or β-solenoid conformations [3]. Similar folding models have also been proposed for PrPSc, although none of these have been confirmed experimentally. Recent cryo-electron microscopy (cryo-EM) and X-ray fiber-diffraction studies provided evidence that PrPSc is structured as a 4-rung β-solenoid (4RβS) [4, 5]. Here, we combined different experimental data and computational techniques to build the first physically-plausible, atomic resolution model of mouse PrPSc, based on the 4RβS architecture. The stability of this new PrPSc model, as assessed by Molecular Dynamics (MD) simulations, was found to be comparable to that of the prion forming domain of Het-s, a naturally-occurring β-solenoid. Importantly, the 4RβS arrangement allowed the first simulation of the sequence of events underlying PrPC conversion into PrPSc. This study provides the most updated, experimentally-driven and physically-coherent model of PrPSc, together with an unprecedented reconstruction of the mechanism underlying the self-catalytic propagation of prions.

摘要

朊病毒是一种不寻常的蛋白质组装体,能够在没有核酸的情况下传播其构象编码信息。第一个被鉴定的朊病毒是细胞朊蛋白(PrPC)的瘙痒型异构体(PrPSc),它引起了流行病和动物流行病[1]。其他错误折叠倾向蛋白的大多数聚集体都是淀粉样体,通常排列成平行排列-β-片层(PIRIBS)[2]或β-螺线管构象[3]。也提出了类似的折叠模型用于 PrPSc,尽管这些模型都没有得到实验证实。最近的低温电子显微镜(cryo-EM)和 X 射线纤维衍射研究提供了证据,表明 PrPSc 是一种 4 梯β-螺线管(4RβS)[4,5]。在这里,我们结合了不同的实验数据和计算技术,基于 4RβS 架构,构建了第一个具有物理合理性的、原子分辨率的小鼠 PrPSc 模型。通过分子动力学(MD)模拟评估,这个新的 PrPSc 模型的稳定性与天然存在的β-螺线管 Het-s 的形成域相当。重要的是,4RβS 排列允许首次模拟 PrPC 转化为 PrPSc 的事件序列。这项研究提供了最更新的、基于实验的、具有物理一致性的 PrPSc 模型,以及对朊病毒自我催化传播机制的前所未有的重建。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2372/6622554/996026d5d0a3/ppat.1007864.g001.jpg

相似文献

1
Full atomistic model of prion structure and conversion.
PLoS Pathog. 2019 Jul 11;15(7):e1007864. doi: 10.1371/journal.ppat.1007864. eCollection 2019 Jul.
2
Scrapie prions: a three-dimensional model of an infectious fragment.
Fold Des. 1996;1(1):13-9. doi: 10.1016/S1359-0278(96)00007-7.
3
Deadly conformations--protein misfolding in prion disease.
Cell. 1997 May 16;89(4):499-510. doi: 10.1016/s0092-8674(00)80232-9.
5
Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins.
Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962-6. doi: 10.1073/pnas.90.23.10962.
6
A general model of prion strains and their pathogenicity.
Science. 2007 Nov 9;318(5852):930-6. doi: 10.1126/science.1138718.
7
Prion protein conversion in vitro.
J Mol Med (Berl). 2004 Jun;82(6):348-56. doi: 10.1007/s00109-004-0534-3. Epub 2004 Mar 10.
8
Prion strain mutation determined by prion protein conformational compatibility and primary structure.
Science. 2010 May 28;328(5982):1154-8. doi: 10.1126/science.1187107. Epub 2010 May 13.

引用本文的文献

1
Cellular Prion Protein and Amyloid-β Oligomers in Alzheimer's Disease-Are There Connections?
Int J Mol Sci. 2025 Feb 27;26(5):2097. doi: 10.3390/ijms26052097.
2
Chaperones as Potential Pharmacological Targets for Treating Protein Aggregation Illness.
Curr Protein Pept Sci. 2025 Jan 27. doi: 10.2174/0113892037338028241230092414.
3
Comparing the Extent of Methionine Oxidation in the Prion and Native Conformations of PrP.
ACS Omega. 2025 Jan 3;10(1):1320-1330. doi: 10.1021/acsomega.4c08892. eCollection 2025 Jan 14.
4
Prions: structure, function, evolution, and disease.
Arch Microbiol. 2024 Nov 22;207(1):1. doi: 10.1007/s00203-024-04200-3.
5
Protein Fold Usages in Ribosomes: Another Glance to the Past.
Int J Mol Sci. 2024 Aug 13;25(16):8806. doi: 10.3390/ijms25168806.
6
Human prion diseases and the prion protein - what is the current state of knowledge?
Transl Neurosci. 2023 Oct 16;14(1):20220315. doi: 10.1515/tnsci-2022-0315. eCollection 2023 Jan 1.
9
Conversion of Helix 1 into a Loop in Prion Protein Misfolding.
ACS Omega. 2023 Feb 10;8(7):7191-7200. doi: 10.1021/acsomega.3c00212. eCollection 2023 Feb 21.

本文引用的文献

1
The prion 2018 round tables (I): the structure of PrP.
Prion. 2019 Jan;13(1):46-52. doi: 10.1080/19336896.2019.1569450.
2
Transition path theory from biased simulations.
J Chem Phys. 2018 Aug 21;149(7):072336. doi: 10.1063/1.5027253.
3
Atomic Detail of Protein Folding Revealed by an Ab Initio Reappraisal of Circular Dichroism.
J Am Chem Soc. 2018 Mar 14;140(10):3674-3682. doi: 10.1021/jacs.7b12399. Epub 2018 Mar 6.
4
Recombinant PrPSc shares structural features with brain-derived PrPSc: Insights from limited proteolysis.
PLoS Pathog. 2018 Jan 31;14(1):e1006797. doi: 10.1371/journal.ppat.1006797. eCollection 2018 Jan.
5
Fibril structure of amyloid-β(1-42) by cryo-electron microscopy.
Science. 2017 Oct 6;358(6359):116-119. doi: 10.1126/science.aao2825. Epub 2017 Sep 7.
6
The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy.
PLoS Pathog. 2016 Sep 8;12(9):e1005835. doi: 10.1371/journal.ppat.1005835. eCollection 2016 Sep.
7
Multifaceted Role of Sialylation in Prion Diseases.
Front Neurosci. 2016 Aug 8;10:358. doi: 10.3389/fnins.2016.00358. eCollection 2016.
8
Impact of Strand Number on Parallel β-Sheet Stability.
Angew Chem Int Ed Engl. 2015 Nov 23;54(48):14336-9. doi: 10.1002/anie.201506448. Epub 2015 Oct 12.
9
Structure-based drug design identifies polythiophenes as antiprion compounds.
Sci Transl Med. 2015 Aug 5;7(299):299ra123. doi: 10.1126/scitranslmed.aab1923.
10
Variational scheme to compute protein reaction pathways using atomistic force fields with explicit solvent.
Phys Rev Lett. 2015 Mar 6;114(9):098103. doi: 10.1103/PhysRevLett.114.098103. Epub 2015 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验