Aix-Marseille Université, Université de Toulon, IRD, CNRS, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France.
Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 Rue Michel-Ange, 75016 Paris, France.
Int J Mol Sci. 2024 Aug 13;25(16):8806. doi: 10.3390/ijms25168806.
The analysis of protein fold usage, similar to codon usage, offers profound insights into the evolution of biological systems and the origins of modern proteomes. While previous studies have examined fold distribution in modern genomes, our study focuses on the comparative distribution and usage of protein folds in ribosomes across bacteria, archaea, and eukaryotes. We identify the prevalence of certain 'super-ribosome folds,' such as the OB fold in bacteria and the SH3 domain in archaea and eukaryotes. The observed protein fold distribution in the ribosomes announces the future power-law distribution where only a few folds are highly prevalent, and most are rare. Additionally, we highlight the presence of three copies of proto-Rossmann folds in ribosomes across all kingdoms, showing its ancient and fundamental role in ribosomal structure and function. Our study also explores early mechanisms of molecular convergence, where different protein folds bind equivalent ribosomal RNA structures in ribosomes across different kingdoms. This comparative analysis enhances our understanding of ribosomal evolution, particularly the distinct evolutionary paths of the large and small subunits, and underscores the complex interplay between RNA and protein components in the transition from the RNA world to modern cellular life. Transcending the concept of folds also makes it possible to group a large number of ribosomal proteins into five categories of urfolds or metafolds, which could attest to their ancestral character and common origins. This work also demonstrates that the gradual acquisition of extensions by simple but ordered folds constitutes an inexorable evolutionary mechanism. This observation supports the idea that simple but structured ribosomal proteins preceded the development of their disordered extensions.
蛋白质折叠的分析与密码子的使用类似,为深入了解生物系统的进化和现代蛋白质组的起源提供了深刻的见解。虽然之前的研究已经检查了现代基因组中折叠的分布,但我们的研究侧重于在细菌、古菌和真核生物的核糖体中比较蛋白质折叠的分布和使用。我们确定了某些“超级核糖体折叠”的普遍性,如细菌中的 OB 折叠和古菌和真核生物中的 SH3 结构域。核糖体中观察到的蛋白质折叠分布预示着未来的幂律分布,即只有少数折叠非常普遍,而大多数则很少见。此外,我们还强调了所有三个生物域的核糖体中存在三个原始 Rossmann 折叠,这表明它在核糖体结构和功能中具有古老而基本的作用。我们的研究还探讨了分子趋同的早期机制,即不同的蛋白质折叠在不同生物域的核糖体中结合等效的核糖体 RNA 结构。这种比较分析增强了我们对核糖体进化的理解,特别是大亚基和小亚基的独特进化路径,并强调了 RNA 和蛋白质成分在从 RNA 世界向现代细胞生命过渡中的复杂相互作用。超越折叠的概念还使得将大量核糖体蛋白归入 urfolds 或 metafolds 这五个类别成为可能,这可能证明它们具有祖先特征和共同起源。这项工作还表明,简单但有序的折叠通过逐渐获得扩展构成了一种不可避免的进化机制。这一观察结果支持了这样一种观点,即简单但结构良好的核糖体蛋白先于其无序扩展的发展。