Department of Biological Engineering, Utah State University, Logan, UT 84322-4105, USA.
Molecules. 2019 Jul 10;24(14):2521. doi: 10.3390/molecules24142521.
This study introduces a simple and environmentally friendly method to synthesize silica-protein nanocomposite materials using microwave energy to solubilize hydrophobic protein in an aqueous solution of pre-hydrolyzed organo- or fluoro-silane. Sol-gel functionality can be enhanced through biomacromolecule incorporation to tune mechanical properties, surface energy, and biocompatibility. Here, synthetic spider silk protein and organo- and fluoro-silane precursors were dissolved and mixed in weakly acidic aqueous solution using microwave technology. Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) images revealed the formation of spherical nanoparticles with sizes ranging from 100 to 500 nm depending, in part, on silane fluoro- or organo-side chain chemistry. The silane-protein interaction in the nanocomposite was assessed through infrared spectroscopy. Deconvoluted ATR-FTIR (Attenuated total reflectance Fourier-transform infrared spectroscopy) spectra revealed silane chemistry-specific conformational changes in the protein-silane nanocomposites. Relative to microwave-solubilized spider silk protein, the β structure content increased by 14% in the spider silk-organo-silica nanocomposites, but decreased by a net 20% in the spider silk-fluoro-silica nanocomposites. Methods of tuning the secondary structures, and in particular β-sheets that are the cross-linking moieties in spider silks and other self-assembling fibrillar proteins, may provide a unique means to promote protein interactions, favor subsequent epitaxial growth process, and enhance the properties of the protein-silane nanocomposites.
本研究介绍了一种简单环保的方法,使用微波能量将疏水性蛋白质溶解在预水解的有机或氟硅烷的水溶液中,从而合成硅蛋白纳米复合材料。通过掺入生物大分子可以增强溶胶-凝胶功能,从而调节机械性能、表面能和生物相容性。在这里,合成蜘蛛丝蛋白和有机硅及氟硅烷前体通过微波技术溶解并混合在弱酸性水溶液中。扫描电子显微镜(SEM)和原子力显微镜(AFM)图像显示,形成了球形纳米颗粒,其尺寸范围为 100 至 500nm,部分取决于硅烷的氟代或有机侧链化学。通过红外光谱评估了纳米复合材料中的硅烷-蛋白质相互作用。解卷积的 ATR-FTIR(衰减全反射傅里叶变换红外光谱)光谱显示,在蛋白质-硅烷纳米复合材料中,硅烷化学引起蛋白质特定的构象变化。与微波溶解的蜘蛛丝蛋白相比,蜘蛛丝-有机硅纳米复合材料中的β结构含量增加了 14%,而蜘蛛丝-氟硅纳米复合材料中的β结构含量净减少了 20%。调节二级结构(特别是β-折叠,它是蜘蛛丝和其他自组装纤维状蛋白质的交联部分)的方法可能提供一种独特的方法来促进蛋白质相互作用,有利于随后的外延生长过程,并增强蛋白质-硅烷纳米复合材料的性能。
Molecules. 2019-7-10
Spectrochim Acta A Mol Biomol Spectrosc. 2016-6-28
Mater Sci Eng C Mater Biol Appl. 2012-12-22
Proc Natl Acad Sci U S A. 2006-6-20
Mater Sci Eng C Mater Biol Appl. 2016-12-1
J Struct Biol. 2014-6
Int J Biol Macromol. 2007-1-30
Molecules. 2020-11-16
Front Chem. 2020-6-30
Molecules. 2020-5-29
Biomacromolecules. 2016-10-17
Biomacromolecules. 2014-8-11
Colloids Surf B Biointerfaces. 2014-7-1
J Mech Behav Biomed Mater. 2013-9-14
Macromol Biosci. 2013-7-23
Macromol Biosci. 2013-1-28
Biomacromolecules. 2012-11-8
Biomaterials. 2011-3-31