Wong Po Foo Cheryl, Patwardhan Siddharth V, Belton David J, Kitchel Brandon, Anastasiades Daphne, Huang Jia, Naik Rajesh R, Perry Carole C, Kaplan David L
Department of Biomedical Engineering, Bioengineering and Biotechnology Center, Tufts University, Medford, MA 02155, USA.
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9428-33. doi: 10.1073/pnas.0601096103. Epub 2006 Jun 12.
Silica skeletal architectures in diatoms are characterized by remarkable morphological and nanostructural details. Silk proteins from spiders and silkworms form strong and intricate self-assembling fibrous biomaterials in nature. We combined the features of silk with biosilica through the design, synthesis, and characterization of a novel family of chimeric proteins for subsequent use in model materials forming reactions. The domains from the major ampullate spidroin 1 (MaSp1) protein of Nephila clavipes spider dragline silk provide control over structural and morphological details because it can be self-assembled through diverse processing methods including film casting and fiber electrospinning. Biosilica nanostructures in diatoms are formed in aqueous ambient conditions at neutral pH and low temperatures. The R5 peptide derived from the silaffin protein of Cylindrotheca fusiformis induces and regulates silica precipitation in the chimeric protein designs under similar ambient conditions. Whereas mineralization reactions performed in the presence of R5 peptide alone form silica particles with a size distribution of 0.5-10 microm in diameter, reactions performed in the presence of the new fusion proteins generate nanocomposite materials containing silica particles with a narrower size distribution of 0.5-2 microm in diameter. Furthermore, we demonstrate that composite morphology and structure could be regulated by controlling processing conditions to produce films and fibers. These results suggest that the chimeric protein provides new options for processing and control over silica particle sizes, important benefits for biomedical and specialty materials, particularly in light of the all aqueous processing and the nanocomposite features of these new materials.
硅藻中的二氧化硅骨骼结构具有显著的形态和纳米结构细节特征。蜘蛛和蚕的丝蛋白在自然界中形成强大而复杂的自组装纤维生物材料。我们通过设计、合成和表征一类新型嵌合蛋白,将丝的特性与生物二氧化硅相结合,以便后续用于模型材料形成反应。来自金蛛科蜘蛛拖牵丝的主要壶腹状腺丝蛋白1(MaSp1)的结构域可控制结构和形态细节,因为它可以通过多种加工方法自组装,包括流延成膜和纤维静电纺丝。硅藻中的生物二氧化硅纳米结构是在中性pH值和低温的水性环境条件下形成的。源自梭形筒柱藻硅亲和蛋白的R5肽在类似的环境条件下,可诱导并调节嵌合蛋白设计中的二氧化硅沉淀。仅在R5肽存在下进行的矿化反应形成直径为0.5 - 10微米的二氧化硅颗粒,而在新融合蛋白存在下进行的反应则生成含有直径为0.5 - 2微米、尺寸分布更窄的二氧化硅颗粒的纳米复合材料。此外,我们证明了通过控制加工条件来生产薄膜和纤维,可以调节复合材料的形态和结构。这些结果表明,嵌合蛋白为加工和控制二氧化硅颗粒大小提供了新的选择,这对生物医学和特殊材料具有重要意义,特别是考虑到这些新材料的全水性加工和纳米复合材料特性。