Contreras April, Hines Dustin J, Hines Rochelle M
Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, United States.
Front Mol Neurosci. 2019 Jun 26;12:154. doi: 10.3389/fnmol.2019.00154. eCollection 2019.
The diversity of inhibitory interneurons allows for the coordination and modulation of excitatory principal cell firing. Interneurons that release GABA (γ-aminobutyric acid) onto the soma and axon exert powerful control by virtue of proximity to the site of action potential generation at the axon initial segment (AIS). Here, we review and examine the cellular and molecular regulation of soma and axon targeting GABAergic synapses in the cortex and hippocampus. We also describe their role in controlling network activity in normal and pathological states. Recent studies have demonstrated a specific role for postsynaptic dystroglycan in the formation and maintenance of cholecystokinin positive basket cell terminals contacting the soma, and postsynaptic collybistin in parvalbumin positive chandelier cell contacts onto the AIS. Unique presynaptic molecular contributors, and , expressed in parvalbumin positive basket cells and chandelier cells, respectively, have also recently been identified. Mutations in the genes encoding proteins critical for somatic and AIS inhibitory synapses have been associated with human disorders of the nervous system. Dystroglycan dysfunction in some congenital muscular dystrophies is associated with developmental brain malformations, intellectual disability, and rare epilepsy. Collybistin dysfunction has been linked to hyperekplexia, epilepsy, intellectual disability, and developmental disorders. Both and mutations are implicated in syndromes with epilepsy as a component. Advancing our understanding of the powerful roles of somatic and axonic GABAergic contacts in controlling activity patterns in the cortex and hippocampus will provide insight into the pathogenesis of epilepsy and other nervous system disorders.
抑制性中间神经元的多样性有助于兴奋性主细胞放电的协调与调节。向胞体和轴突释放γ-氨基丁酸(GABA)的中间神经元,凭借靠近轴突起始段(AIS)动作电位产生部位,发挥着强大的控制作用。在此,我们综述并研究了皮质和海马中靶向胞体和轴突的GABA能突触的细胞和分子调控。我们还描述了它们在正常和病理状态下控制网络活动中的作用。最近的研究表明,突触后营养不良聚糖在形成和维持与胞体接触的胆囊收缩素阳性篮状细胞终末中具有特定作用,而突触后结肠直肠癌蛋白在小白蛋白阳性吊灯细胞与AIS的接触中起作用。最近还分别在小白蛋白阳性篮状细胞和吊灯细胞中鉴定出了独特的突触前分子贡献者 和 。编码对胞体和AIS抑制性突触至关重要的蛋白质的基因突变与人类神经系统疾病有关。一些先天性肌营养不良中的营养不良聚糖功能障碍与发育性脑畸形、智力残疾和罕见癫痫有关。结肠直肠癌蛋白功能障碍与惊吓症、癫痫、智力残疾和发育障碍有关。 和 突变都与以癫痫为组成部分的综合征有关。深入了解胞体和轴突GABA能接触在控制皮质和海马活动模式中的强大作用,将有助于深入了解癫痫和其他神经系统疾病的发病机制。